I
Сердце
Сердце (лат. соr, греч. cardia) — полый фиброзно-мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения.
Анатомия
Сердце находится в переднем средостении (Средостение) в Перикарде между листками медиастинальной плевры (Плевра). Оно имеет форму неправильного конуса (рис. 1) с основанием вверху и обращенной книзу, влево и кпереди верхушкой. Размеры С. индивидуально различны. Длина С. взрослого человека колеблется от 10 до 15 см (чаще 12—13 см), ширина в основании 8—11 см (чаще 9—10 см) и переднезадний размер 6—8,5 см (чаще 6, 5—7 см). Масса С. в среднем составляет у мужчин 332 г (от 274 до 385 г), у женщин — 253 г (от 203 до 302 г).
По отношению к средней линии тела С. располагается несимметрично — около 2/3 слева от нее и около 1/3 — справа. В зависимости от направления проекции продольной оси (от середины его основания до верхушки) на переднюю грудную стенку различают поперечное, косое и вертикальное положение С. Вертикальное положение чаще встречается у людей с узкой и длинной грудной клеткой, поперечное — у лиц с широкой и короткой грудной клеткой.
Сердце состоит из четырех камер: двух (правого и левого) предсердий и двух (правого и левого) желудочков (рис. 2). Предсердия находятся в основании сердца. Спереди из С. выходят аорта и легочный ствол, в правой части в него впадают верхняя полая вена, в задненижней — нижняя полая вена, сзади и слева — левые легочные вены, а несколько правее — правые легочные вены. Различают переднюю (грудинореберную), нижнюю (диафрагмальную), которую в клинике иногда называют задней, и левую боковую (легочную) поверхности сердца. Выделяют также правый край С., образованный в основном правым предсердием и примыкающий к правому легкому. Передняя поверхность, прилежащая к грудине и хрящам левых III—V ребер (рис. 3), на большем протяжении представлена правым желудочком, на меньшем — левым желудочком и предсердиями (рис. 4, а). Границе между желудочками соответствует передняя межжелудочковая борозда, а между желудочками и предсердиями — венечная борозда. В передней межжелудочковой борозде располагаются передняя межжелудочковая ветвь левой венечной артерии (рис. 1, 8), большая вена С. (рис. 1, 7), нервное сплетение и отводящие лимфатические сосуды; в венечной борозде правая венечная артерия, нервное сплетение и лимфатические сосуды. Диафрагмальная поверхность С. обращена вниз и прилежит к диафрагме. Она составлена левым желудочком, частично правым желудочком и участками правого и левого предсердий. На диафрагмальной поверхности оба желудочка граничат друг с другом по задней межжелудочковой борозде, в которой проходят задняя межжелудочковая ветвь правой венечной артерии, средняя вена С., нервы и лимфатические сосуды. Задняя межжелудочковая борозда вблизи верхушки С. соединяется с передней, образуя вырезку верхушки сердца. Силуэт фронтальной проекции сердца на пере днюю грудную стенку (рис. 3) имеет правую, нижнюю и левую границы. Правая граница образуется вверху (II—III ребро) краем верхней полой вены, внизу (III—V ребро) — краем правого предсердия. На уровне V ребра правая граница переходит в нижнюю, которая образована краем правого и частично левого желудочков и идет косо вниз и влево, пересекая грудину над основанием мечевидного отростка, к межреберному промежутку слева и далее, пересекая хрящ VI ребра, достигает V межреберного промежутка на 1,5 см кнутри от среднеключичной линии. Левая граница образована дугой аорты, легочным стволом, левым ушком С. и левым желудочком. Места выхода аорты и легочного ствола проецируются на уровне III межреберного промежутка: устье аорты — позади левой половины грудины, а устье легочного ствола — у левого ее края.
Структура камер С. соответствует его функции как насоса. Правое предсердие с правым желудочком, левое — с левым сообщаются соответственно через правое и левое предсердно-желудочковые отверстия, снабженные клапанами (рис. 2), обеспечивающими направление тока крови из предсердий в желудочки при их диастоле и препятствующими обратному току при систоле желудочков. Сообщение полостей желудочков с артериями регулируется клапанами, расположенными в устьях аорты и легочного ствола. Правый предсердно-желудочный клапан называют трехстворчатым (трикуспидальным), левый — двустворчатым, или митральным.
Правое предсердие имеет неправильную кубическую форму; емкость его у взрослого человека колеблется в пределах 100—140 мл, толщина стенки составляет 2—3 мм. Справа предсердие образует полый отросток — правое ушко. Внутренняя поверхность его имеет ряд гребней, образованных пучками гребенчатых мышц. На латеральной стенке предсердия гребенчатые мышцы оканчиваются, образуя возвышение — пограничный гребень (crista terminalis), которому на наружной поверхности соответствует пограничная борозда (sulcus terminalis). Медиальная стенка предсердия — межпредсердная перегородка — имеет в центре овальную ямку, дно которой образовано, как правило, двумя листками эндокарда. Высота ямки составляет 18—22 мм, ширина — 17—21 мм. У плода на месте овальной ямки располагается овальное отверстие, сообщающее полости предсердий. Иногда оно сохраняется к моменту рождения, обусловливая смещение артериальной и венозной крови. Сзади в правое предсердие вверху впадают верхняя и нижняя полые вены. Устье нижней полой вены ограничено тонкой (складка эндокарда шириной до 10 мм), которая у плода направляет струю крови к овальному отверстию. Между устьями полых вен стенка правого предсердия выпячивается и образует синус полых вен. В задненижнюю часть предсердия впадает венечный синус сердца, имеющий заслонку.
Правый желудочек по форме приближается к трехгранной пирамиде (обращенной основанием кверху), медиальная стенка которой относится к межжелудочковой перегородке. Емкость правого желудочка у взрослых 150—240 мл, толщина стенки 5—7 мм. Вес правого желудочка 64—74 г. В правом желудочке выделяют две части: собственно желудочек и артериальный конус, расположенный в верхней левой части желудочка и продолжающийся в легочный ствол. Диаметр отверстия легочного ствола 17—21 мм. Его клапан состоит из 3 полулунных заслонок: передней, правой и левой. В середине каждой полулунной заслонки имеются утолщения (узелки), способствующие более герметичному смыканию заслонок. Внутренняя поверхность желудочка неровная за счет идущих в различных направлениях мясистых трабекул, которые слабо выражены на межжелудочковой перегородке. Правое предсердно-желудочковое (атриовентрикулярное) отверстие, расположенное вверху желудочка (справа и сзади от отверстия легочного ствола), имеет овальную форму; его продольный размер составляет 29—48 мм, поперечный — 21—46 мм. Клапан этого отверстия, как и митральный клапан, состоит из фиброзного кольца; створок, прикрепляющихся своим основанием к фиброзному кольцу (свободные края створок обращены в полость желудочка); сухожильных хорд, идущих от свободных краев створок к стенке желудочка, к сосочковым мышцам или мясистым трабекулам; сосочковых мышц, образованных внутренним слоем миокарда желудочков. Количество створок клапана лишь немногим чаще, чем в половине случаев, соответствует его обозначению «трехстворчатый»; оно колеблется от 2 до 6, причем большее количество створок встречается при больших размерах атриовентрикулярного отверстия. По месту прикрепления различают переднюю, заднюю и перегородочную створки и соответствующие им сосочковые мышцы, с верхушками которых створки соединены сухожильными хордами. Большое количество сосочковых мышц бывает при увеличенном количестве створок.
Левое предсердие, имеющее близкую к цилиндрической форму, образует слева вырост — левое ушко. Емкость левого предсердия 90—135 мл, толщина стенки 2—3 мм. Внутренняя поверхность стенок предсердия гладкая, за исключением стенок ушка, где имеются валики гребенчатых мышц. На задней стенке расположены устья легочных вен (по две справа и слева). На межпредсердной перегородке со стороны левого предсердия заметна сросшаяся с перегородкой заслонка овального отверстия (valvula foraminis ovalis). Левое ушко более узкое и длинное, чем правое, оно отграничено от предсердия хорошо выраженным перехватом.
Левый желудочек имеет коническую форму. Его емкость от 130 до 220 мл, толщина стенки 11—14 мм. Масса левого желудочка 130—150 г. Из-за закругленности левого края С. передняя и задняя стенки левого желудочка нерезко разграничены, медиальная стенка соответствует межжелудочковой перегородке. Ближайший к отверстию аорты участок левого желудочка называется артериальным конусом. Внутренняя поверхность желудочка, за исключением перегородки, имеет многочисленные мясистые трабекулы. Вверху располагаются два отверстия: слева и спереди — овальное левое предсердно-желудочковое (его продольный размер составляет 23—37 мм, поперечный — 17—33 мм), справа и сзади — отверстие аорты. Клапан левого предсердно-желудочкового отверстия (митральный) имеет чаще всего две створки и соответственно две сосочковые мышцы — переднюю и заднюю. Клапан аорты образован тремя полулунными заслонками — задней, правой и левой. Начальная часть аорты в месте расположения клапана расширена (диаметр ее достигает 22—30 мм) и имеет три углубления — синусы аорты.
Стенки сердца образуются тремя оболочками: наружной — эпикардом, внутренней — эндокардом и расположенной между ними мышечной оболочкой — миокардом. Эпикард — висцеральная пластинка перикарда — является серозной оболочкой. Он состоит из тонкой пластинки соединительной ткани с различным расположением эластических и коллагеновых волокон, покрытой с поверхности мезотелием. Миокард (рис. 5) составляет основную массу стенки сердца. Миокард желудочков отделен от миокарда предсердий фиброзными кольцами, от которых начинаются пучки волокон миокарда. В миокарде желудочков условно можно выделить наружный, средний и внутренний (глубокий) слои. Наружные слои миокарда желудочков общие. Ход волокон наружного и внутреннего слоев имеет вид редкой спирали; средний слой пучков миокарда циркулярный. Гистологически ткань миокарда отличается от поперечнополосатой скелетной мышечной ткани рядом признаков, в т.ч. меньшими размерами клеток миокарда (кардиомиоцитов) и саркомер, наличием в клетке одного ядра, соединением кардиомиоцитов последовательно друг с другом по типу конец в конец посредством вставочных дисков и др. Около 30—40% объема кардиомиоцита занимают митохондрии. Особая насыщенность кардиомиоцитов митохондриями отражает высокий уровень метаболизма ткани, обладающей непрерывной активностью. В миокарде имеется особая система волокон, обладающих способностью проводить импульсы ко всем мышечным слоям С. и координировать последовательность сокращения стенки камер С. Эти специализированные мышечные волокна составляют проводящую систему сердца. Она состоит из синусно-предсердного и предсердно-желудочкового узлов и пучков (предсердных, межузловых соединительных, предсердно-желудочкового и его ветвей и др.). В ткани проводящей системы С., более адаптированной к анаэробному метаболизму, чем сократительный миокард, митохондрии занимают около 10% клеточного объема, а миофибриллы — около 20%. Эндокард выстилает полость С., включая сосочковые мышцы, сухожильные хорды, трабекулы и клапаны. В желудочках эндокард тоньше, чем в предсердиях. Он, как и эпикард, состоит из двух слоев: субэндотелиального и коллагеново-эластического, покрытых эндотелием. Створка клапана сердца представляет собой складку эндокарда, в которой имеется соединительнотканная прослойка.
Иннервация сердца происходит из сердечного сплетения, расположенного под эпикардом, большей частью в стенках предсердий, меньшей — в стенках желудочков (рис. 4). Оно образовано ветвями грудного аортального сплетения, а также имеет сердечные ганглии, содержащие синапсы пре- и постганглионарных парасимпатических нервных волокон. В составе ветвей грудного аортального сплетения к С. подходят постганглионарные симпатические, преганглионарные парасимпатические и чувствительные нервные волокна. Волокна сердечного сплетения формируют вторичные интрамуральные сплетения с чувствительными и мигательными волокнами.
Кровеснабжение сердца осуществляется обычно правой и левой венечной артериями, отходящими от луковицы аорты (рис. 4). В зависимости от преобладающего значения какой-либо из них в обеспечении сердца кровью различают правовенечный (рис. 6) и левовенечный (рис. 7), а также равномерный типы кровоснабжения Левая венечная артерия делится на огибающую и переднюю межжелудочковую ветви. От огибающей артерии отходя несколько ветвей, в т.ч. анастомотическая передняя, предсердно-желудочковые, левая краевая, промежуточная предсердная, задняя левого желудочка, а также ветви синусно-предсердного и предсердно-желудочкового узлов и предсердные ветви. От передней межжелудочковой артерии отделяются ветви артериального конуса, латеральная и перегородочные межжелудочковые. Правая венечная артерия отдает ветвь артериального конуса, ветви синусно-предсердного и предсердно-желудочкового узлов, предсердные и промежуточные предсердные ветви, правую краевую, заднюю межжелудочковую (от нее отходят перегородочные межжелудочковые ветви) и правую заднелатеральную ветвь. Артерии С. ветвятся во всех его оболочках. Благодаря анастомозам в С. может быть коллатеральное кровообращение. Отток крови из вен стенки С. происходит в основном в венечный синус, впадающий в правое предсердие. Кроме того, кровь оттекает непосредственно в правое предсердие через передние вены сердца.
Лимфоотток осуществляется из лимфокапиллярной сети эндокарда в сосуды миокарда, а из сетей миокарда и эпикарда — в субэпикардиальные лимфатические сосуды. Из них формируются правый и левый главные лимфатические сосуды, впадающие в лимфатические узлы средостения
Физиология
Сердце работает как насос, нагнетая кровь в артерии в период сокращения желудочков, или систолу, и заполняясь кровью из вен в период расслабления, или диастолу. Деятельность С. как насоса является основным источником механической энергии движения крови в малом и большом кругах кровообращения (Кровообращение), благодаря чему поддерживается непрерывность обмена веществ и энергии в организме. Энергетическое обеспечение этой деятельности зависит почти исключительно от выработки АТФ в окислительном фосфорилировании, протекающем в митохондриях (см. Клетка) и требующем наличия молекулярного кислорода (прекращение поступления кислорода приводит к быстрому уменьшению сократительной способности миокарда). Для аэробного метаболизма С. главными энергетическими субстратами являются Жирные кислоты, Глюкоза, лактат, пируват (см. Гликолиз) и Кетоновые тела, поступающие в кардиомиоциты из плазмы крови, и в меньшей степени — Аминокислоты. При наличии жирных кислот и углеводов преимущественными энергетическими субстратами для С. являются жирные кислоты, на окисление которых используется около 70% кислорода, потребляемого сердцем. Транспорт глюкозы в кардиомиоциты увеличивается при повышении концентрации глюкозы, в присутствии Инсулина, катехоламинов (Катехоламины), а также в условиях гипоксии и уменьшается при повышении концентрации жирных кислот. Из плазмы крови в кардиомиоциты проникают только свободные жирные кислоты (СЖК). Липопротеины и триглицериды (см. Жиры) плазмы крови могут использоваться в энергетическом обмене С. только после их расщепления до СЖК ферментами. В клетках СЖК активируются с использованием АТФ и образованием ацетил-КоА. Продукт β-окисления СЖК ацетил-КоА подвергается окислению в цикле трикарбоновых кислот (см. Обмен веществ и энергии) до углекислоты и воды. Общая скорость аэробного окисления СЖК и углеводов связана со скоростью потребления кислорода, которая связана линейной зависимостью с работой, выполняемой сердцем. При изменении кровообращения от состояния, соответствующего физическому покою организма, до состояния при максимальных физических нагрузках скорость потребления кислорода С. может меняться в пределах от 50 до 300 мкг․атомов на 1 г сухого веса ткани в 1 мин. Содержание в С. высокоэргических фосфатов (см. Макроэргические соединения) в этих условиях практически не меняется, т.к. их количество, потраченное на сокращение С., быстро восполняется за счет синтеза в митохондриях. При этом важное значение имеет не только образование АТФ из АДФ, но и транспорт энергии в кардиомиоцитах, т.к. для сокращения сердца используется только АТФ, локализованная в миофибриллах и около мембран. Транспортную функцию осуществляет фосфокреатин (ФКр) с участием креатинкиназы, которая катализирует реакцию АТФ + креатин ⇔ ФКр + АДФ, поддерживая тем самым соотношение АТФ:АДФ на постоянном уровне.
Преобразование энергии высокоэргических фосфатов в механическую работу сердечных сокращений связано со специфическими физиологическими функциями отдельных структур С., способствующих преобразованию химической энергии в механическую в определенном ритме. Соответственно, кроме свойства сократимости важными объектами физиологического исследования являются такие свойства С., как автоматия, возбудимость (способность возбуждаться под действием раздражителя), проводимость, рефрактерность и др.
Импульсы возбуждения периодически возникают в С. под влиянием процессов, протекающих в нем самом. Это явление получило название автоматии. Способностью к автоматии обладает специфическая мышечная ткань, формирующая синусно-предсердный узел и проводящую систему сердца. На мембранах клеток специфической мускулатуры С. зарождаются электрические импульсы, переходящие на рабочий миокард и вызывающие его сокращения. Эти процессы связаны с деполяризацией клеточных мембран, которые в состоянии покоя клетки всегда поляризованы вследствие разной концентрации Nа+ и К+ на поверхности и внутри клетки из-за неодинаковой проницаемости мембраны для этих ионов. В состоянии покоя мембрана кардиомиоцита почти непроницаема для Nа+ и частично проницаема для К+, который под действием процесса диффузии выходит из клетки, увеличивая на поверхности мембраны положительный заряд. При этом внутренняя поверхность мембраны приобретает отрицательный заряд, образуется потенциал покоя мембраны порядка 60—80 мВ. Возбуждение клетки связано с увеличением проницаемости мембраны для Nа+, поступление которого в клетку сопровождается деполяризацией мембраны и реверсией потенциала на ее поверхности, т.е. наружная поверхность мембраны приобретает отрицательный электрический заряд. При этом формируется потенциал действия, превышающий на своем пике величину потенциала покоя, достигая значений до 100 мВ и более. Потенциал действия деполяризует мембраны соседних клеток, в результате чего они генерируют собственные потенциалы действия — происходит распространение процесса возбуждения по клеткам миокарда. В отличие от волокон сократительного миокарда мембрана клеток, способных к автоматии, не имеет после выхода из возбуждения постоянного потенциала покоя, т.к. сохраняет некоторую степень проницаемости для Nа+. Вследствие перемещения этих ионов внутрь клетки и одновременного снижения проницаемости для К+ возникает постепенное уменьшение положительного заряда на поверхности мембраны — развивается так называемая медленная диастолическая деполяризация. Когда уровень потенциала покоя уменьшится по сравнению с исходным приблизительно на 20 мВ, возникает резкое увеличение проницаемости мембраны для Nа+, в результате чего Nа+ лавинообразно поступает внутрь клетки, вызывая деполяризацию мембраны и формируя потенциал действия.
Участок, в котором автоматически зарождаются импульсы, ведущие к сокращению С. называют водителем ритма, или Пейсмекером. В нормальных условиях им является синусно-предсердный узел.
Особенностью проводящей системы предсердий и желудочков является способность почти каждой из ее клеток (кроме клеток предсердно-желудочкового узла) самостоятельно генерировать импульсы возбуждения, т. е. она как и синусно-предсердный узел, обладает автоматией. Существует так называемый градиент автоматии, выражающийся в убывании частоты генерации импульсов клетками проводящей системы по мере удаления их от синусно-предсердного узла. Клетки синусно-предсердного узла человека в покое спонтанно генерируют ритмические импульсы возбуждения частотой 60—80 импульсов в минуту, клетки пучка Гиса и его ножек — частотой 30—40 импульсов в минуту, а волокна Пуркинье — частотой около 20 импульсов в минуту. В обычных условиях автоматия всех участков проводящей системы подавляется частыми импульсами, поступающими к ним из синусно-предсердного узла, но в случае поражения последнего водителем ритма может стать ниже расположенный отдел проводящей системы.
Возникнув в синусно-предсердном узле, возбуждение по специальным внутрипредсердным проводящим путям, а также диффузно распространяется по миокарду предсердий, достигает предсердно-желудочкового узла и после некоторой задержки в нем (благодаря которой кровь во время сокращения предсердий заполняет полость еще расслабленных желудочков) распространяется по пучку Гиса и волокнам Пуркинье — к волокнам сократительного миокарда. В миокарде предсердий и желудочков скорость проведения возбуждения составляет 0,9—1,0 м/сек, в волокнах предсердно-желудочкового узла — 0,05 м/сек, пучке Гиса — 1—1,5 м/сек, волокнах Пуркинье — 3 м/сек. Быстрое проведение через волокна Пуркинье обеспечивает почти одновременное возбуждение различных участков миокарда желудочков, что повышает мощность сокращения сердца и эффективность работы желудочков по нагнетанию крови. Время охвата поверхности желудочков возбуждением составляет 10—15 м/сек. Электрические потенциалы, возникновение которых связано с распространением возбуждения по сердцу, можно зарегистрировать при помощи электродов, наложенных на поверхность тела (см. Электрокардиография, Векторкардиография).
Потенциалы действия мембран сердечных волокон представляют собой пусковой механизм, включающий серию внутриклеточных процессов, сопрягающих возбуждение с сокращением миофибрилл. Сокращение мышцы происходит без изменения длины актиновых и миозиновых нитей саркомера — основной сократительной единицы мышечной ткани. Укорочение мышечного волокна достигается за счет вдвигания актиновых нитей между миозиновыми благодаря веслообразным движениям поперечных мостиков — выступающих участков миозиновой нити, образованных из меромиозина, обладающего АТФ-азной активностью. При расслаблении мышцы актиновые нити отодвигаются назад и занимают прежнее положение по отношению к нитям миозина. Актиновые нити состоят из цепочек молекул белка актина, на поверхности которых находятся тонкие нити из белка тропомиозина, блокирующего центры взаимодействия актина с миозином. Тропомиозин образует комплекс с белком тропонином, обладающим высоким сродством к Са2+. Процесс сокращения миокарда запускается Са2+, который поступает к сократительным белкам из цистерн саркоплазматического ретикулума под воздействием импульса возбуждения. Са2+ связывается тропонином, что вызывает изменение пространственного расположения тропонин-тропомиозинового комплекса на актиновой нити, снимая тормозное действие его на активные центры актина. В результате происходит ассоциация актина с миозином — образование актомиозина, идентифицируемое с сокращением, и расщепление АТФ, освобождающее энергию для скольжения актиновых нитей. Процесс расслабления миокарда возникает в результате удаления ионов кальция от тропонина под действием реполяризации мембраны и связывания их саркоплазматическим ретикулумом, а также вследствие «откачивания» ионов кальция насосами клеточных мембран в межклеточную жидкость.
При повторных электрических раздражениях остановленного С. происходит постепенное повышение концентрации ионов кальция внутри клетки, вследствие чего сила каждого последующего сокращения постепенно возрастает до тех пор, пока сокращения не достигнут максимальной величины. Это постепенное возрастание силы сокращений получило название «лестница Боудича». Возможность появления сокращений в ответ на раздражение С. электрическим током используется в современных методах нормализации ритма С. с помощью портативных электростимуляторов (см. Кардиостимуляция).
Сердце нагнетает кровь в сосудистую систему благодаря периодическому последовательному сокращению мышечных клеток предсердий и желудочков. Внутри С. благодаря функции клапанов кровь движется только в одном направлении: в фазе диастолы — из предсердий в желудочки, в фазе систолы желудочков — из правого желудочка в легочный ствол, из левого — в аорту. Захлопывание и открытие клапанов С. связаны с изменением направления градиента давления между сообщающимися камерами в фазы систолы и диастолы желудочков. Движение клапанов С. и перемещение крови вместе с изменением напряжения стенок С. сопровождаются звуковыми феноменами, в частности образованием тонов сердца (Тоны сердца). Около 2/3 объема крови, поступающей в желудочки в фазу диастолы, притекает в связи с положительным давлением крови в экстракардиальных венах, и 1/3 подкачивается в желудочки в фазу систолы предсердий.
Предсердия являются резервуаром для притекающей крови, легко меняющим свою емкость благодаря небольшой толщине их стенок и наличию добавочных емкостей — ушек предсердий, способных при расправлении вместить значительный объем крови.
При каждом сокращении С. правый и левый желудочки изгоняют соответственно в легочный ствол и аорту по 60—70 мл крови — систолический, или ударный, объем крови. Количество крови, нагнетаемое С. в аорту в течение 1 мин, называют минутным объемом крови (МО), а отношение МО к площади поверхности тела — сердечным индексом. Из значений МО и среднего давления крови в аорте определяется внешняя работа сердца, которая в условиях физического покоя составляет у человека 7—11 кгм, а при тяжелой физической работе возрастает до 80 кгм. Энергия, выделяющаяся при деятельности сердца, в 4 раза превышает ту, которую можно определить по величине его внешней работы. По сравнению с другими органами, за исключением коры головного мозга, С. наиболее интенсивно поглощает кислород крови. Поэтому общее кислородное голодание (например, при подъеме на высоту) и перебои в снабжении миокарда кислородом (при нарушениях коронарного кровообращения) быстро нарушают деятельность сердца.
Сердечный индекс у женщин на 7—10% меньше, чем у мужчин. С возрастом величина сердечного индекса уменьшается (по некоторым данным, в среднем на 25 мл/мин/м2 в год).
Снижение регенераторных возможностей организма и интенсивности обменных процессов в пожилом и старческом возрасте сказывается на деятельности С. и уменьшает приспособление его к интенсивным нагрузкам. Кроме того, работа С. затрудняется при артериальной гипертензии, повышении общего периферического сопротивления кровотоку.
Особенности функции С. у детей характеризуются выраженной возрастной динамикой его деятельности по мере совершенствования механизмов ее регуляции.
Регуляция деятельности сердца. Приспособление деятельности С. к изменяющимся потребностям организма в кровоснабжении происходит с помощью регуляторных механизмов, представленных как экстракардиальными нервными и гуморальными влияниями, так и на уровне клеток и межклеточного взаимодействия в самом сердце.
На внутриклеточном уровне осуществляется ауторегуляция скорости синтеза в кардиомиоцитах различных белков в соответствии с их расходом при работе С., а также регуляция интенсивности деятельности С. в соответствии с количеством притекающей к нему крови. Усиленный приток крови обусловливает более сильное растяжение клеток миокарда в момент диастолы. Это приводит к тому, что актиновые нити каждой миофибриллы в большей степени выдвигаются из промежутков между миозиновыми нитями. Происходит рост числа поперечных мостиков, т. е. участков, обеспечивающих соединение актиновых и миозиновых нитей в момент сокращения. В результате каждая миофибрилла и все С. сокращаются тем сильнее, чем больше были растянуты во время диастолы. Эта закономерность получила название закона Старлинга, или Франка — Старлинга (по имени открывших ее ученых).
Регуляция межклеточных взаимодействий в миокарде связана с функцией нексусов — вставочных дисков, обеспечивающих передачу возбуждения с клетки на клетку. Нарушение межклеточных взаимодействий может привести к несинхронности возбуждения и соответственно сокращения отдельных участков миокарда с ослаблением его сократительной функции.
Внутриорганные механизмы регуляции деятельности С. отчетливо обнаруживаются при пересадке С., когда после дегенерации всех нервных элементов экстракардиального происхождения в С. сохраняется и функционирует внутрисердечная нервная система. По типу внутрисердечных (периферических) рефлексов могут возникать рефлекторные влияния с одного отдела С. на другой, изменяющие силу сокращения и другие функции миокарда. Так, при малом в покое исходном кровенаполнении С. увеличение растяжения миокарда правого ушка вследствие возрастания притока крови (например, в связи с изменением положения тела, сокращением скелетных мышц) приводит к усилению сокращений миокарда левого желудочка. Если С. переполнено кровью, то дополнительное растяжение его венозных приемников притекающей кровью угнетает сократительную активность миокарда левого желудочка, вследствие чего в аорту выбрасывается меньше крови. Задержка крови в камерах С. вызывает повышение диастолического давления в его полостях и снижение венозного притока; излишний объем крови, который мог бы привести к резкому подъему АД при внезапном выбросе его в артерии, задерживается в венозной системе, обладающей большой резервной емкостью. В случае недостаточного наполнения кровью камер С. внутрисердечные рефлексы вызывают усиление сокращений миокарда, предотвращая критическое снижение АД. При этом желудочки в момент систолы выбрасывают не половину, а большее количество содержащейся в них крови. Вследствие увеличения при этом градиента венозного притока кровь начинает усиленно притекать к сердцу из вен. Т.о., регуляция деятельности С внутрисердечной нервной системой взаимодействует с внесердечными механизмами регуляции кровяного давления (Кровяное давление) и дополняет их. В естественных условиях внутрисердечная нервная система не является автономной. Она представляет лишь одно из звеньев сложной иерархии механизмов нервной регуляции сердца.
Экстракардиальная нервная регуляция деятельности С. осуществляется ядрами блуждающего нерва в продолговатом мозге и симпатическими нервами верхних пяти грудных сегментов спинного мозга. Импульсы, поступающие к С. по волокнам симпатических нервов, вызывают учащение сердечных сокращений (положительное хронотропное действие), повышают их силу (положительное инотропное действие) и возбудимость миокарда (положительный батмотропный эффект), увеличивают скорость проведения возбуждения (положительный дромотропный эффект). Эти эффекты связаны с возбуждением β-адренорецепторов С. норадреналином, выделяемым окончаниями симпатических нервов. Введение адреномиметиков в С. приводит к таким же изменениям сердечной деятельности, как и раздражение симпатических нервов.
Раздражение сердечных волокон блуждающего нерва, выделяющих ацетилхолин, или введение последнего в С. вызывает урежение и ослабление сокращений сердца, уменьшение возбудимости и замедление скорости проведения возбуждения в миокарде (т.е. отрицательные хроно-, ино-, батмо-, и дромотропный эффекты) вследствие возбуждения м-холинорецепторов сердца.
И.П. Павлов показал, что среди нервных веточек сердечного сплетения имеются волокна, раздражение которых избирательно ведет только к учащению сердечных сокращений (так называемый ускоряющий нерв сердца), и нервные волокна, раздражение которых избирательно увеличивает силу сердечных сокращений (так называемый усиливающий нерв сердца). Усиливающий нерв, по И.П. Павлову, играет трофическую роль. Он оказывает влияние на проведение возбуждения в миокарде. Раздражение его способно устранять блокаду проведения возбуждения в предсердно-желудочковом узле.
Через ядра блуждающих и симпатических нервов реализуются рефлекторные влияния на С., возникающие при раздражении различных рефлексогенных зон. Так, болевые раздражения кожи вызывают рефлекторное учащение сердечных сокращений, раздражение механорецепторов желудка и брюшины — их урежение; при сильном ударе в живот возможна рефлекторная остановка сердца.
Более высокой ступенью иерархии нервной регуляции деятельности С. является Гипоталамус — высший центр регуляции вегетативных функций, обеспечивающий перестройку деятельности сердечно-сосудистой системы и других систем организма по сигналам, поступающим из лимбической системы (Лимбическая система) и коры большого мозга (Кора большого мозга). На этих уровнях интегрально регулируется деятельность всей сердечно-сосудистой системы в соответствии с изменяющимися потребностями организма и всех его органов в кровоснабжении при различных поведенческих реакциях, возникающих в ответ на изменения условий внешней и внутренней среды. Кора головного мозга — орган психической деятельности, обеспечивающий целостные приспособительные реакции организма не только к текущим, но и к будущим событиям. По механизму условных рефлексов сигналы, непосредственно предвещающие наступление этих событий или вероятную возможность их возникновения, могут вызвать необходимую перестройку функций С. и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма. При очень сложных ситуациях, при действии чрезвычайных раздражителей возможны нарушения и срывы высших регуляторных механизмов, когда наряду с расстройствами поведенческих реакций могут появиться и значительные нарушения деятельности С. и сердечно-сосудистой системы. В некоторых случаях эти нарушения могут закрепиться по типу патологических условных рефлексов.
Гуморальная регуляция деятельности С. в наибольшей степени осуществляется адреналином, секретируемым надпочечниками, и другими веществами, циркулирующими в крови. Адреналин выбрасывается в кровь при эмоциональном и физическом напряжении; он реагирует с β-адренорецепторами мембран сердечных волокон. Возбуждение β-адренорецепторов активирует фермент аденилциклазу, способствующую образованию циклического АМФ, необходимого для превращения неактивной фосфорилазы в активную, что обеспечивает снабжение миокарда энергией. Подобным образом на С. влияют и ионы кальция, активирующие фосфорилазу и обеспечивающие сопряжение возбуждения и сокращения, создавая положительный инотропный эффект. В отличие от этого К+, , Н+ угнетают силу сокращений миокарда.
Влияют на деятельность С. и различные гормоны. Гормон поджелудочной железы глюкагон оказывает на С. положительный инотропный эффект, стимулируя аденилциклазу; гормон щитовидной железы тироксин увеличивает частоту сердечных сокращений.
В норме в состоянии покоя у взрослых частота сердечных сокращений составляет 60—80 в 1 мин. У новорожденных в регуляции деятельности С. доминирующую роль играет симпатическая нервная система, что наряду с высоким обменом веществ обусловливает высокую частоту сердечных сокращений. По мере повышения в регуляции С. роли блуждающего нерва частота пульса с возрастом постепенно уменьшается. У новорожденных она составляет 120—140 в 1 мин, в возрасте 6 мес. — 130—135, в 1 год — 120—125, в 2—4 года — 100—115, в 5—7 лет — 85—100, в 8—11 лет — 80—85, в 12—15 лет — 70—80 в 1 мин. Число сердечных сокращений у детей одного и того же возраста подвержено индивидуальным колебаниям и зависит от температуры, приема пищи, времени суток, эмоционального состояния и др. У здоровых детей часто наблюдается синусовая (дыхательная) аритмия — вагусный пульс, особенно выраженная у детей дошкольного и школьного возраста. Величина ударного и минутного объемов С. у детей с возрастом увеличивается при уменьшении отношения минутн