Математическая энциклопедия

Виноградова Оценки

Название нескольких теорем И. М. Виноградова. Наиболее известными из них являются следующие. а) В. о. сумм характеров (см. Дирихле характер). Если — неглавный характер , то при б) В. о. сумм Вейля (см. Вейля сумма). Пусть n — постоянное число с условием и пусть Пусть далее точки n-мерного пространства разбиты на два класса — точки класса 1 и точки класса 2. Т о ч-кой класса 1 наз. точка где первые слагаемые — рациональные несократимые дроби с положительными знаменателями, имеющими общим наименьшим кратным число Q, не превосходящее , а вторые слагаемые удовлетворяют условию Точкой класса 2 наз. точка, не являющаяся точкой класса 1. Тогда, если положить то для точек класса 2 при будет выполняться Если же положить то для точек класса 1 при будет выполняться или также в) В. о. тригонометрических сумм с простыми числами. Пусть И пусть, в обозначениях теоремы б), точки n-мерного пространства разбиты на классы следующим образом. К классу 1a отнесены точки, удовлетворяющие условиям К классу 1b отнесены точки, не являющиеся точками класса 1aи удовлетворяющие условиям Наконец, к классу 2 отнесены все остальные точки. Если положить для точек класса 1а или также для точек класса 1b, взяв положить (при можно брать любую из указанных пар значений и ); и, наконец, для точек класса 2 положить то при всегда будет выполняться Лит.:[1] Виноградов И. М., Метод тригонометрических сумм в теории чисел, М., 1971; [2] Xуа Лo-гeн. Метод тригонометрических сумм и его применения в теории чисел, пер. с нем., М., 1964. А. А. Карацуба.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте