Математическая энциклопедия

Винера Тауберова Теорема

Если и преобразование Фурье функции не обращается в нуль, а — функция из такая, что свертка стремится к нулю при , то для любой свертка стремится к нулю при . Установлена Н. Винером [1]. Эта теорема обобщена на случай любой коммутативной локально компактной некомпактной группы G: если х — суммируемая относительно Хаара меры функция на Gи преобразование Фурье функции хне обращается в нуль на группе характеров группы , а функция упринадлежит пространству и свертка стремится к нулю на бесконечности на G, то свертка стремится к нулю на бесконечности на G для всех суммируемых функций на G. Эта теорема основана на регулярности групповой алгебры коммутативной локально компактной группы и на возможности спектрального синтеза в групповых алгебрах для замкнутых идеалов, принадлежащих лишь конечному числу регулярных максимальных идеалов [3]. Лит.:[1] Wiener N.. "Ann. Math.", 1932, v. 33, p. 1 — 100; [2] Наймарк М. А., Нормированные кольца, 2 изд., М., 1968; [3] Бур баки Н., Спектральная теория, пер. с франц., М., 1972. А. И. Штерн.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте