Большая советская энциклопедия

Умножение

Умноже́ние

Операция образования по двум данным объектам а и b, называемым сомножителями, третьего объекта с, называемого произведением. У. обозначается знаком Х (ввёл англ. математик У. Оутред в 1631) или • (ввёл нем. учёный Г. Лейбниц в 1698); в буквенном обозначении эти знаки опускаются и вместо а × b или а • b пишут ab. У. имеет различный конкретный смысл и соответственно различные конкретные определения в зависимости от конкретного вида сомножителей и произведения. У. целых положительных чисел есть, по определению, действие, относящее числам а и b третье число с, равное сумме b слагаемых, каждое из которых равно а, так что ab = а + а +... + а (b слагаемых). Число а называется множимым, b – множителем. У. дробных чисел и определяется равенством (см. Дробь). У. рациональных чисел даёт число, Абсолютная величина которого равна произведению абсолютных величин сомножителей, имеющее знак плюс (+), если оба сомножителя одинакового знака, и знак минус (–), если они разного знака. У. иррациональных чисел (См. Иррациональное число) определяется при помощи У. их рациональных приближений. У. комплексных чисел (См. Комплексные числа), заданных в форме α = а + bi и β = с + di, определяется равенством αβ = ac – bd + (ad + bc) i. При У. комплексных чисел, записанных в тригонометрической форме:

α = r1 (cosφ1 + isin φ1),

β = r2 (cosφ2 + isin φ2),

их модули перемножаются, а аргументы складываются:

αβ = r1r2{cos (φ1 + φ2) + i sin ((φ1 + φ2)}.

У. чисел однозначно и обладает следующими свойствами:

1) ab = ba (коммутативность, переместительный закон);

2) a (bc) = (ab) c (ассоциативность, сочетательный закон);

3) a (b + c) = ab + ac (дистрибутивность, распределительный закон). При этом всегда а ․0 = 0; a․1 = а. Указанные свойства лежат в основе обычной техники У. многозначных чисел.

Дальнейшее обобщение понятия У. связано с возможностью рассматривать числа как операторы в совокупности векторов на плоскости. Например, комплексному числу r (cosφ + i sin φ) соответствует оператор растяжения всех векторов в r раз и поворота их на угол φ вокруг начала координат. При этом У. комплексных чисел отвечает У. соответствующих операторов, т. е. результатом У. будет оператор, получающийся последовательным применением двух данных операторов. Такое определение У. операторов переносится и на другие виды операторов, которые уже нельзя выразить при помощи чисел (например, линейные преобразования). Это приводит к операциям У. матриц, кватернионов, рассматриваемых как операторы поворота и растяжения в трёхмерном пространстве, ядер интегральных операторов и т.д. При таких обобщениях могут оказаться невыполненными некоторые из перечисленных выше свойств У., чаще всего – свойство коммутативности (некоммутативная алгебра). Изучение общих свойств операции У. входит в задачи общей алгебры, в частности теории групп и колец.

В других словарях



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте