Физический энциклопедический словарь
(от позднелат. trajectorius — относящийся к перемещению), непрерывная линия, к-рую описывает точка при своём движении. Если Т.— прямая линия, движение точки наз. прямолинейным, в противном случае — криволинейным. Вид Т. свободной материальной точки зависит от действующих на точку сил, нач. условий движения и от того, по отношению к какой системе отсчёта движение рассматривается; для несвободной точки вид Т. зависит ещё от наложенных связей (см. СВЯЗИ МЕХАНИЧЕСКИЕ).
Рис. 1. Параболич. траектория.
Напр., по отношению к Земле (если пренебречь её суточным вращением) Т. свободной материальной точки, отпущенной без нач. скорости и движущейся под действием силы тяжести, будет прямая линия (вертикаль), а если точке сообщить нач. скорость v0, не направленную вдоль вертикали, то при отсутствии сопротивления воздуха её Т. будет парабола (рис. 1).
Рис. 2. Виды траекторий в поле тяготения Земли.
Т. точки, движущейся в центр. поле тяготения, в зависимости от величины нач. скорости может быть эллипс, парабола или гипербола (в частных случаях — прямая линия или окружность). Так, в поле тяготения Земли, если считать его центральным и пренебречь сопротивлением среды, Т. точки, получившей вблизи поверхности Земли нач. скорость v0, направленную горизонтально (рис._2), будет: окружность, когда v0=?(gR)»7,9 км/с (первая косм. скорость); эллипс, когда ?(2gR) >v0>?(gR); парабола, когда v0=?(2gR)»11,2 км/с (вторая косм. скорость); гипербола, когда v0>?(2gR). Здесь R — радиус Земли, g — ускорение силы тяготения вблизи земной поверхности, а движение рассматривается по отношению к осям, перемещающимся вместе с центром Земли поступательно относительно звёзд; для тела (напр., спутника) всё сказанное относится к Т. его центра тяжести. Если же направление v0 не будет ни горизонтальным, ни вертикальным, то при v0(2gR) Т. точки будет представлять собой дугу эллипса, пересекающую поверхность Земли; таковы Т. центра тяжести баллистич. ракет.
Пример несвободной точки — небольшой груз, подвешенный на нити (см. МАЯТНИК). Если нить отклонить от вертикали и отпустить без нач. скорости, то Т. груза будет дугой окружности, а если при этом грузу сообщить нач. скорость, не лежащую в плоскости отклонения нити, то Т. груза могут быть кривые довольно сложного вида, лежащие на поверхности сферы (сферич. маятник), но в частном случае это может быть окружность, лежащая в горизонтальной плоскости (конич. маятник).
Т. точек тв. тела зависят от закона движения тела. При поступат. движении тела Т. всех его точек одинаковы, а во всех других случаях движения эти Т. будут вообще разными для разных точек тела. Напр., у колеса автомобиля на прямолинейном участке пути Т. точки обода колеса по отношению к шоссе будет циклоида, а Т. центра колеса — прямая линия. По отношению же к кузову автомобиля Т. точки обода будет окружность, а центр колеса — неподвижен. Определение Т. имеет важное значение как при теор. исследованиях, так и при решении многих практич. задач.