(левый) — абелева топологич. группа А, являющаяся модулем над топологич. кольцом R, при этом требуется, чтобы отображение умножения переводящее (r, а )в rа, было непрерывно. Аналогичным образом определяются правые Т. м. Любой подмодуль ВТ. м. Асам является Т. м. Если модуль Аотделим и Взамкнут в А, то А/В — отделимый модуль. Прямое произведение топологич. модулей является Т. м. Пополнение модуля Акак абелевой топологич. группы можно наделить естественной структурой Т. м. над пополнением кольца R. Топологическим G-модулем, где G — нек-рая топологич. группа, наз. топологич. абелева группа А, являющаяся G-модулем, причем требуется, чтобы отображение умножения . было непрерывно. Лит.:[1] Бурбаки Н., Общая топология. Топологические группы. Числа и связанные с ними группы и пространства, пер. с франц., М., 1969; [2] его же, Коммутативная алгебра, пер. с франц., М., 1971. Л. В. Кузьмин.