Физический энциклопедический словарь

СТРУЯ

Форма течения жидкости, при к-рой жидкость (газ) течёт в среде (газе, жидкости, плазме) с отличающимися от С. параметрами (скоростью, темп-рой, плотностью и т. п.). Струйные течения чрезвычайно распространены и разнообразны (от С., вытекающей из сопла ракетного двигателя, до струйных течений в атмосфере и океане). При их изучении рассматриваются изменения скорости, плотности, концентрации компонентов газа и темп-ры как в самой С., так и в окружающей её среде. Струйные течения классифицируют по наиболее существ. признакам, характеризующим течение в С. Наиб. распространены С., вытекающие из сопла, трубы или отверстия в стенке сосуда. В зависимости от формы поперечного сечения отверстия (сопла) рассматривают круглые, квадратные, плоские С. и т. п. Если скорости течения в С. на срезе сопла параллельны, её наз. осевой; различают также веерные и закрученные С.

В соответствии с хар-ками в-ва рассматривают С. капельной жидкости, газа, плазмы и т. п. В особый класс выделяют двухфазные С., напр. газовые, содержащие жидкие или тв. ч-цы. Для С. сжимаемых газов существенным явл. отношение скорости газа v0 на срезе сопла к скорости а распространения звук. волн — Маха число M=v0/a; в зависимости от значения М различают С.: дозвуковые (M<1) и сверхзвуковые (M>l). В зависимости от направления скорости течения газа (жидкости) в окружающей среде различают С., вытекающие в спутный (направленный в ту же сторону), встречный и сносящий поток (напр., С. жидкости, вытекающая из трубы в реку и направленная соответственно по течению, против течения и под углом к скорости течения реки). С., вытекающая в бассейн,— пример С., вытекающей в неподвижную среду. Если состав жидкости (газа) в С. и окружающей её неподвижной среде одинаков, С. наз. затопленной (напр., С. воздуха, вытекающая в неподвижную атмосферу). С. наз. свободной, если она вытекает в среду, не имеющую ограничивающих поверхностей, полуограниченной, если она течёт вдоль плоской стенки, стеснённой, если вытекает в среду, ограниченную тв. стенками (напр., С., вытекающая в трубу большего диаметра, чем диаметр сопла).

В соответствии с физ. особенностями в-ва С. и внеш. среды различают С. смешивающиеся (С. газа, вытекающая в воздух) и несмешивающиеся (С. воды, вытекающая в атмосферу). Поверхность несмешивающейся С. неустойчива, и на нек-ром расстоянии от среза сопла С. распадается на капли. Дальнобойность такой С.— расстояние, на к-ром она сохраняется монолитной, зависит от физ. св-в её в-ва и уровня нач. возмущений в сопле.

В случае, когда в-во С. способно смешиваться с в-вом внеш. среды, на границе раздела образуется монотонно расширяющаяся вдоль С. область вязкого перемешивания — струйный пограничный слой. В зависимости от режима течения в слое перемешивания различают С. ламинарные или турбулентные. С., вытекающая из сопла реактивного двигателя летящего самолёта,— пример турбулентной сверхзвуковой С., вытекающей в спутный поток, к-рый в зависимости от скорости полёта самолёта может быть дозвуковым или сверхзвуковым. В дозвуковой С. статич. давление в любой точке С. постоянно и равно давлению в окружающем пр-ве. Такие С., наз. изобарическими, широко распространены в различных техн. системах. На срезе сопла спутной изобарич. С. (сечение аа, рис. 1) скорость течения v0 отличается от скорости спутного потока vн. На границе С. и внеш. потока образуется пограничный слой Т, состоящий из газа С. и увлечённого ею газа внеш. среды.

Рис. 1. Спутная изобарическая струя газа: b0 — радиус сопла; b — радиус струи; xн— длина нач. участка; xп — длина переходного участка; vO — скорость течения на срезе сопла; vн— скорость течения внеш. среды; vm?v0 — скорость течения на оси струи; Т — пограничный слой струи.

Расход газа в С., ограниченной размером b, по мере удаления от среза сопла монотонно увеличивается за счёт вовлечения в С. газа из внеш. среды, но суммарное кол-во движения газа, определённое по избыточной скорости v0-vн, остаётся неизменным.

В нач. участке С. при х<�хн расширяющийся пограничный слой ещё не достигает оси течения; скорость v вблизи оси постоянна и равна скорости на срезе сопла. В переходном участке С. хн<�х?хп вязкое перемешивание распространяется на весь объём С., скорость течения на оси уменьшается, но профили ещё продолжают изменяться. В осн. участке С. (х>хп) скорость течения на оси продолжает уменьшаться, а профили относит. скорости Dv/Dvm=f(y/b) становятся неизменными (автомодельными; (см. АВТОМОДЕЛЬНОЕ ТЕЧЕНИЕ)) (Dv=v-vн, Dvm=vm-vн — избыточные скорости в рассматриваемой точке течения и на оси С.). Уширение С. на осн. участке, так же как и расширение пограничного слоя в нач. участке турбулентной С., зависит от разницы скорости на оси С. и скорости внеш. потока. Аналогичные зависимости характеризуют изменения темп-ры и концентрации компонентов газа в случае, если они различны у газа С. и внеш. среды.

Рис. 2. Сверхзвук. нерасчётная струя в сверхзвук. спутном потоке: х — нач. газодинамич. участок струи (первая «бочка»); хп — переходный участок струи; хнв — расстояние, на к-ром слой вязкого перемешивания достигает оси течения; Т — область вязкого перемешивания (пограничный слой) струи; 1 — ударная волна, возникающая в спутном потоке; 2 — ударные волны в струе.

Более сложны сверхзвук. турбулентные нерасчётные С., напр. С., вытекающие из сверхзвук. сопел реактивных и ракетных двигателей, газовых и паровых турбин. Нач. газодинамич. участок нерасчётной сверхзвуковой С. (первая «бочка», рис. 2) x?xнг определяется как расстояние от среза сопла до пересечения ударных волн 2 с границей С. Геом. размеры и структура этого участка зависят от нерасчётности С. n=ра/рн (где ра — давление в С. на срезе сопла, рн — давление в окружающей среде), чисел Маха на срезе сопла Ма и в окружающей среде Мн и физ. характеристик газа С. и внеш. среды. Возникающий на границе С. слой вязкого перемешивания достигает оси С. на расстоянии xнв. Далее после переходного участка хп, в к-ром затухают волны давления и устанавливаются автомодельные профили скорости, темп-ры и концентрации, С. становится изобарической. В случаях сверхзвук. течения в спутном потоке (Mн>1) за С. образуется ударная волна 1. Рассмотренные схемы С. отличаются от действительного течения, к-рое значительно сложнее, однако на их основе удаётся создать методики расчёта, позволяющие с достаточной точностью определить поля скоростей, темп-ры и концентрации в С. и окружающей среде. Это необходимо для определения кол-ва в-ва, захватываемого (эжектируемого) С. из внеш. среды, расчётов силового и теплового вз-ствия С. с поверхностью, расположенной на заданном расстоянии от среза сопла, излучения С. и для ряда др. задач.

В других словарях



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте