Группы . но подгруппе Н(л евый) — множество элементов группы G, равное где а — нек-рый фиксированный элемент из G. С. к. наз. также левосторонним С. к. группы G по подгруппе Н, определяемым элементом а. Всякий левый С. к. определяется любым из своих элементов. aН=H тогда и только тогда, когда Для любых С. к. aН и bН либо совпадают, либо не пересекаются. Таким образом, группа G распадается на непересекающиеся левые С. к. по подгруппе Н — это разложение наз. левосторонним разложением группы Gпо подгруппе H. Аналогично определяются правые смежные классы (множества На, ) и правостороннее разложение группы G по подгруппе H. Оба разложения — правостороннее и левостороннее — группы G по Нсостоят из одного и того же числа классов (в бесконечном случае совпадают мощности множеств этих классов). Это число (мощность) наз. индексом подгруппы . в группе G. Для нормальных делителей левостороннее и правостороннее разложения совпадают, и в этом случае говорят просто о разложении группы по ее нормальному делителю. О. А. Иванова.