Плоская кривая, радиус кривизны Rк-рой в произвольной точке Мпропорционален длине отрезка нормали МР (см. рис.). Уравнение Р. к. в декартовых прямоугольных координатах: где . Если n=1/h(h- любое целое число), то параметрич. уравнения Р. к.: где m= — ( п+1) п. При m = 0 Р. к. есть окружность, при m = 1 — циклоида, при m= -2 — цепная линия, при m = — 3 — парабола. Длина дуги Р. к.: радиус кривизны: Эту кривую исследовал А. Рибокур (A. Ribauconr, 1880). Лит.:[1] С а в е л о в А. А., Плоские кривые, М., 1960; [2] Р а ш е в с к и й П. К., Курс дифференциальной геометрии, 4 изд., М., 1956. Д. Д. Соколов.