Топологического пространства X — целочисленный инвариант dim X, определяемый следующим образом. Тогда и только тогда dim X = -1, когда . О непустом тополо-гич. пространстве Xговорят, что оно не более чем n-мерно, и пишут dim , если в любое конечное открытое покрытие пространства Xможно вписать конечное открытое покрытие пространства Xкратности . Если для нек-рого п=-1,0,1,. . ., то пространство Xназ. конечномерным, пишется и считается При этом если dim X = n, то пространство наз. n-мерным. Понятие Р. топологич. пространства обобщает элементарно-геометрич. понятие числа измерений евклидова пространства (и полиэдра), т. к. размерность n-мерного евклидова пространства (и любого n-мерного полиэдра) равна n (теорема Брауэра — Лебега). Важность понятия Р. топологич. пространства выявляется теоремой Нёбелинга — Понтрягина — Гуревича -Куратовского: n-мерное метризуемое со счетной базой пространство вкладывается в (2n+1)-мерное евклидово пространство. Таким образом, класс пространств, топологически эквивалентных подпространствам всевозможных n-мерных евклидовых пространств, n=1, 2,. . ., совпадает с классом конечномерных метризуемых пространств со счетной базой. dim Xиногда наз. лебеговой, т. Наиболее содержательна теория Р. прежде всего в классе метрич. пространств со счетной базой и затем в классе любых метрич. пространств. В классе мет-рич. пространств со счетной базой выполняются равенства Урысона dimX = indX = IndX. (2) В классе любых метрич. пространств выполняется р а-венство Катетова dimX = IndX (3) и может быть ind X=0<IndX=l. В случае метрич. пространств понятие n-мерного пространства следующими двумя способами может быть сведено к понятию нульмерного пространства. Для метрич. пространства Xтогда и только тогда , n=0,1,. . ., когда а) пространство X может быть представлено в виде не более чем n+1 нульмерных слагаемых; б) существует непрерывное замкнутое отображение кратности нульмерного метрич. пространства на пространство X. Для любого подмножества Аметрич. пространства Xнайдется такое подмножество типа в X, что dim B=dim A. В классе метрич. пространств веса и размерности существует универсальное (в смысле вложений) пространство. Важную роль в построении теории Р. любых метрических (и более общих) пространств сыграла теорема Даукера: тогда и только тогда dim , когда в любое локально конечное открытое покрытие пространства X можно вписать открытое покрытие кратности Одним из наиболее важных вопросов теории Р. является вопрос о соотношениях между лебеговой и индуктивными Р. Хотя для произвольного пространства Xзначения размерностей dim X,ind X,Ind X, вообще говоря, попарно различны, однако для нек-рых классов пространств, в том или ином смысле близких к метрическим, выполнено, напр., следующее: а) если пространство Xобладает непрерывным замкнутым отображением f размерности dim f=0 на метрич. пространство, то выполняется равенство (3), отсюда следуют равенства (2) для локально бикомпактных групп и их факторпространств; б) если существует непрерывное замкнутое отображение метрич. пространства на пространство X, то выполняются равенства (2). Еще одно общее условие для выполнения равенства (3) для паракомпакта Xвыглядит так: dim X=n и пространство X является образом нульмерного пространства при замкнутом отображении кратности , n=0,1,. . . В случае произвольного пространства X всегда выполняются неравенства , а равенства dim Х = 0 и IndX = 0 равносильны. Для сильно паракомпактного (в частности, бикомпактного или финально компактного) пространства X выполняется неравенство dim . Для бикомпактов равенства ind X=l и IndX = l равносильны. Существуют бикомпакты, удовлетворяющие первой аксиоме счетности (и даже совершенно нормальные в предположении континуум-гипотезы), для которых dim Х=1, ind X=n, n=2,3,. . . Построен пример топологич. однородного бикомпакта с dim X<ind X. Для совершенно нормальных бикомпактов всегда ind X=Ind X. Существуют бикомпакты даже с первой аксиомой счетности, для к-рых indX<IndX. Существует ли такое т, что для каждого n>m найдется бикомпакт (метрич. пространство) X с ind X=m,Ind X = n,- неизвестно (1983). В случае неметризуемых пространств Р. может не только не быть монотонной, но и обладает другими патологич. свойствами. Для любого n=2,3,. . . построен пример такого бикомпакта , что любое замкнутое подмножество его имеет Р. или 0 или . Аналогичный пример в случае индуктивных Р. невозможен. Построен также для любого n=1,2,. . .пример такого бикомпакта , что любое разбивающее этот бикомпакт замкнутое множество имеет размерность n=dim . Таким образом, подход к определению Р. в случае неметризуемого пространства в принципе отличен от индуктивного подхода А. Пуанкаре, основанного на разбиении пространства подпространствами меньшего числа измерений. Бикомпакты имеют непосредственное отношение к следующему утверждению: в любом n-мерном бикомпакте содержится n-мерное канторово многообразие. Подмножество n-мерного евклидова пространства Е п тогда и только тогда n-мерно, когда оно содержит внутренние относительно Е n точки. Компакт имеет размерность тогда и только тогда, когда он обладает отображением Р. нуль в Е п, и, таким образом, с точностью до нульмерных отображений n-мерные компакты не отличимы от ограниченных замкнутых, содержащих внутренние (относительно Е).точки подмножеств Е п. См. также Размерности теория. Лит.:[1] А л е к с а н д р о в П. С., П а с ы н к о в Б. А., Введение в теорию размерности, М., 1973; [2] Г у р е в и ч В., В о л м э н Г., Теория размерности, пер. с англ., М., 1948; [3] У р ы с о н П. С.., Труды по топологии и другим областям математики, т. 1-2, М.- Л., 1951. Б. А. Пасынков.