Математическая энциклопедия

Равносходящиеся Ряды

Такие сходящиеся или расходящиеся числовые ряды а п и , разность к-рых является сходящимся рядом с суммой, равной нулю: . Если же их разность является лишь сходящимся рядом, то исходные ряды наз. равносходящимися в широком смысле. Если а п -а п (х)и b п=b п (х).- функции, напр. а n: , b п: , где X — произвольное множество, а — множество действительных чисел, то ряды и наз. равномерно равносходящимися (равномерно равносходящимися в широком смысле) на множестве X, если их разность есть ряд, к-рый равномерно сходится на Xи его сумма равна нулю (соответственно просто равномерно сходится на X). Пример. Если две интегрируемые на отрезке [-p, p] функции равны на интервале , то их ряды Фурье — равномерно равносходящиеся на каждом интервале I*, внутреннем к интервалу I, а сопряженные ряды Фурье — равномерно равносходящиеся на I* в широком смысле. Л. Д. Кудрявцев.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте