Математическая энциклопедия

Паскаля Теорема

Противоположные стороны шестиугольника, вписанного в линию 2-го порядка, пересекаются в трех точках, лежащих на одной прямой (на прямой Паскаля, см. рис. 1). П. т. верна и в том случае, когда две или даже три соседних вершины совпадают (но не более чем но две в одной точке). В этом случае в качестве прямой, проходящей через две совпадающие вершины, принимается касательная к линии в этой точке. Касательная к линии 2-го порядка, проведенная в одной из вершин вписанного пятиугольника, пересекается со стороной, противоположной этой вершине, в точке, к-рая лежит на прямой, проходящей через точки пересечения остальных нар несмежных сторон этого пятиугольника (см. рис. 2). Если ABCD — четырехугольник, вписанный в линию 2-го порядка, то точки пересечения касательных в вершинах Си Dсоответственно со сторонами AD и ВС и точка пересечения прямых АВ и CD лежат на одной прямой (см. рис. 3). Точки пересечения касательных в вершинах треугольника, вписанного в линию 2-го порядка, с противоположными сторонами лежат на одной прямой (см. рис. 4). П. т. двойственна Брианшона теореме. П. т. установлена Б. Паскалем (В. Pascal, 1639). Частный случай П. т. для линии 2-го порядка, вырождающейся в пару прямых, был известен еще в древности (см. Паппа аксиома). Лит.:[1] Глаголев Н. А., Проективная геометрия, 2 изд., М., 1963; [2] Ефимов Н. В., Высшая геометрия, 6 изд , М 1978. П. С. Моденов, А. С. Пархоменко.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте