Математическая энциклопедия

Остроградского Формула

.- формула интегрального исчисления функций многих переменных, устанавливающая связь между n-кратным интегралом по области и ( п -1)-кратным интегралом но ее границе. Пусть функции Xi=Xi(x1,x2,..., х п).вместе со своими частными производными , i=1, 2,..., п, интегрируемы по Лебегу в ограниченной области , граница к-рой является объединением конечного множества кусочно гладких ( п-1)-мерных гиперповерхностей, ориентированных с помощью внешней нормали V. Тогда О. ф. имеет вид Если — направляющие косинусы внешних нормалей v гиперповерхностей, составляющих границу области G, то формула (1) может быть записана в виде где — элемент n-мерного объема в , a ds — алемент (n — 1)-мерного объема на . В терминах векторного ноля формулы (1) и (2) означают равенство интеграла от дивергенции этого поля по области G его потоку (ем. Поток векторного поля) через границу области G: Для гладких функций О. ф. была впервые получена в трехмерном случае М. В. Остроградским в 1828 (опубл. в 1831, см. [1]). Па n-кратные интегралы в случае произвольного натурального n О. ф. была обобщена мм в 1834 (опубл. в 1838, см. [2]). С помощью этой формулы М. В. Остроградский нашел выражение производной по параметру от n-кратного интеграла с переменными пределами и получил формулу для вариации n-кратного интеграла; при n=3 для одного частного случая О. ф. была получена К. Гауссом (С. Gauss) в 1813 , поэтому иногда О. ф. наз. также формулой Остроградского — Гаусса. Обобщением О. ф. является С такса формула для многообразий с краем. Лит.:[1] Остроградский М. В., "Memoires de Г Academic dcs Sciences de St. Petersbourg. Ser. 6 — Sciences mathematiques, physiques ct naturelles", 1831, t. 1, p. 117-22; [2] его ж с, там же, 1838, t. 1, p. 35-58. Л. Д. Кудрявцев.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте