Непрерывный оператор, отображающий топологическое и, как правило, векторное пространство в или . Поэтому определение и признаки непрерывности произвольного оператора сохраняются с соответствующей спецификацией и для функционалов. Так, напр.:1) для того чтобы функционал где М- подмножество топологического пространства X, был непрерывен в точке , для любого должна существовать окрестность Uточки такая, что при (определение непрерывности функционала);2) функционал, непрерывный на компактном множестве отделимого топологического векторного пространства, ограничен на этом множестве и достигает на нем своих точных границ (теорема Вейерштрасса);3) так как всякий ненулевой линейный функционал отображает банахово пространство на все (или ), то он осуществляет открытое отображение, т. е. образ любого открытого множества есть открытое множество в (или ). В. И. Соболев.