Математическая энциклопедия

Морфизм

Категории — термин, используемый для обозначения элементов произвольной категории, играющих роль отображений множеств друг в друга, гомоморфизмов групп, колец, алгебр, непрерывных отображений топологич. пространств и т. п. М. категории — неопределяемое понятие. Каждая категория состоит из элементов двух классов, наз. классом объектов и классом морфизмов соответственно. Класс М. категории обычно обозначается Любой М. aкатегории имеет однозначно определенное начало — объект Аи однозначно определенный конец — объект В. Все М. с общими началом Аи концом Вобразуют подмножество класса . Тот факт, что М. имеет начало Аи конец В, можно записать обычным образом: пли с помощью стрелок: и т. п. Деление элементов категории на М. и объекты имеет смысл только в пределах фиксированной категории, т. к. М. одной категории могут быть объектами другой и наоборот. М. любой категории образуют систему, замкнутую относительно частичной бинарной операции — умножения. В зависимости от свойств М. по отношению к этой операции выделяются специальные классы М., напр, мономорфизм, эпиморфизм, биморфизм, изоморфизм, нулевой морфизм, нормальный мономорфизм, нормальный эпиморфизм и Т. Д. М. Ш. Цаленко.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте