Математическая энциклопедия

Марковский Процесс

Процесс без последействия, — случайный процесс, эволюция к-рого после любого заданного значения временного параметра tне зависит от эволюции, предшествовавшей t, при условии, что значение процесса в этот момент фиксировано (короче: "будущее" н "прошлое" процесса не зависят друг от друга при известном "настоящем"). Определяющее М. п. свойство принято наз. марковским; впервые оно было сформулировано А. А. Марковым [1]. Однако уже в работе Л. Башелье [2] можно усмотреть попытку трактовать броуновское движение как М. п., попытку, получившую обоснование после исследований Н. Винера (N. Wiener, 1923). Основы общей теории М. п. с непрерывным временем были заложены А. Н. Колмогоровым [3]. Марковское свойство. Имеются существенно отличающиеся друг от друга определения М. п. Одним из наиболее распространенных является следующее. Пусть на вероятностном пространстве задан случайный процесс со значениями из измеримого пространства где Т — подмножество действительной оси Пусть Nt (соответственно Nt).есть s-алгебра в порожденная величинами X(s).при где Другими словами, Nt (соответственно Nt) — это совокупность событий, связанных с эволюцией процесса до момента t(начиная с t). Процесс X(t).наз. марковским процессом, если (почти наверное) для всех выполняется марковское свойство: или, что то же самое, если для любых М. п., для к-рого Тсодержится в множестве натуральных чисел, наз. Маркова цепью (впрочем, последний термин чаще всего ассоциируется со случаем не более чем счетного Е). Если Тявляется интервалом в а Ене более чем счетно, М. п. наз. цепью Маркова с непрерывным временем. Примеры М. п. с непрерывным временем доставляются диффузионными процессами и процессами с независимыми приращениями, в том числе пуассоновским и винеровским. В дальнейшем для определенности речь будет идти только о случае Формулы (1) и (2) дают ясную интерпретацию принципа независимости "прошлого" и "будущего" при известном "настоящем", но основанное на них определение М. п. оказалось недостаточно гибким в тех многочисленных ситуациях, когда приходится рассматривать не одно, а набор условий типа (1) или (2), отвечающих различным, хотя и согласованным определенным образом, мерам Такого рода соображения привели к принятию следующего определения (см. [9], [11]). Пусть заданы: а) измеримое пространство где s-алгебра содержит все одноточечные множества в Е; б) измеримое пространство снабженное семейством s-алгебр таких, что если в) функция ("траектория") xt=xt(w), определяющая при любых измеримое отображение г) для каждых и вероятностная мера на s-алгебре такая, что функция измерима относительно если и Набор наз. (необрывающимся) марковским процессом, заданным в если -почти наверное каковы бы ни были Здесь — пространство элементарных событий, — фазовое пространство или пространство состояний, Р(s, x, t, В) — переходная функция или вероятность перехода процесса X(t). Если Енаделено топологией, а — совокупность борелевских множеств в Е, то принято говорить, что М. п. задан в Е. Обычно в определение М. п. включают требование, чтобы и тогда истолковывается как вероятность при условии, что xs=x. Возникает вопрос: всякую ли марковскую переходную функцию Р(s, x; t, В), заданную в измеримом пространстве можно рассматривать как переходную функцию нек-рого М. п. Ответ положителен, если, напр., Еявляется сепарабельным локально компактным пространством, а — совокупностью борелевских множеств в Е. Более того, пусть Е — полное метрич. пространство и пусть для любого где а — дополнение e-окрестности точки х. Тогда соответствующий М. п. можно считать непрерывным справа и имеющим пределы слева (т. е. таковыми можно выбрать его траектории). Существование же непрерывного М. п. обеспечивается условием при (см. [9], [11]). В теории М. п. основное внимание уделяется однородным (по времени) процессам. Соответствующее определение предполагает заданной систему объектов а) — г) с той разницей, что для фигурировавших в ее описании параметров sи u теперь допускается лишь значение 0. Упрощаются и обозначения: Далее, постулируется однородность пространства W, т. е. требуется, чтобы для любых существовало такое что (w) при Благодаря этому на s-алгебре N, наименьшей из s-алгебр в W, содержащих любое событие вида задаются операторы временного сдвига qt, к-рые сохраняют операции объединения, пересечения и вычитания множеств и для к-рых где Набор наз. (необрывающимся) однородным марковским процессом, заданным в если -почти наверное для Переходной функцией процесса X(t).считается Р(t, x, В), причем, если нет специальных оговорок, дополнительно требуют, чтобы Полезно иметь в виду, что при проверке (4) достаточно рассматривать лишь множества вида где и что в (4) всегда Ft можно заменить s-алгеброй , равной пересечению пополнений Ft по всевозможным мерам Нередко в фиксируют вероятностную меру m ("начальное распределение") и рассматривают марковскую случайную функцию где — мера на заданная равенством М. п. наз. прогрессивно измеримым, если при каждом t>0 функция индуцирует измеримое отображение в где есть s-алгебра борелевских подмножеств в [0, t]. Непрерывные справа М. п. прогрессивно измеримы. Существует способ сводить неоднородный случай к однородному (см. [11]), и в дальнейшем речь будет идти об однородных М. п. Строго марковское свойство. Пусть в измеримом пространстве задан М. п. Функция наз. марковским моментом, если для всех При этом множество относят к семейству Ft, если при (чаще всего Ft интерпретируют как совокупность событий, связанных с эволюцией X(t).до момента т). Для полагают Прогрессивно измеримый М. п. Xназ. строго марковским процессом (с. м. п.), если для любого марковского момента т и всех и соотношение (строго марковское свойство) выполняется -почти наверное на множестве Wt. При проверке (5) достаточно рассматривать лишь множества вида где в этом случае С. м. п. является, напр., любой непрерывный справа феллеровский М. п. в топологич. пространстве Е. М. п. наз. феллеровским марковским процессом, если функция непрерывна всякий раз, когда f непрерывна и ограничена. В классе с. м. п. выделяются те или иные подклассы. Пусть марковская переходная функция Р(t, x, В), заданная в метрическом локально компактном пространстве Е, стохастически непрерывна: для любой окрестности Uкаждой точки Тогда если операторы переводят в себя класс непрерывных и обращающихся в 0 в бесконечности функций, то функции Р(t, х, В).отвечает стандартный М. п. X, т. е. непрерывный справа с. м. п., для к-рого при при и — почти наверное на множестве где а — неубывающие с ростом пмарковские моменты. Обрывающийся марковский процесс. Нередко физич. системы целесообразно описывать с помощью необрывающегося М. п., но лишь на временном интервале случайной длины. Кроме того, даже простые преобразования М. п. могут привести к процессу с траекториями, заданными на случайном интервале (см. Функционал от марковского процесса). Руководствуясь этими соображениями, вводят понятие обрывающегося М. п. Пусть — однородный М. п. в фазовом пространстве имеющий переходную функцию и пусть существуют точка и функция такие, что при и в противном случае (если нет специальных оговорок, считают ). Новая траектория xt(w) задается лишь для ) посредством равенства a Ft определяется как след в множестве Набор где наз. обрывающимся марковским процессом (о. м. п.), полученным из с помощью обрыва (или убивания) в момент z. Величина z наз. моментом обрыва, или временем жизни, о. м. п. Фазовым пространством нового процесса служит где есть след s-алгебры в Е. Переходная функция о. м. п.- это сужение на множество Процесс X(t).наз. строго марковским процессом, или стандартным марковским процессом, если соответствующим свойством обладает Необрывающийся М. п. можно рассматривать как о. м. п. с моментом обрыва Неоднородный о. м. п. определяется аналогичным образом. М.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте