Физический энциклопедический словарь
Распределение по скоростям молекул (ч-ц) макроскопич. физ. системы, находящейся в статистич. равновесии, при условии, что движение молекул подчиняется законам классич. механики (пример — классический идеальный газ). Установлено Дж. Максвеллом в 1859. Согласно М. р., вероятное число молекул в ед. объёма f(v), компоненты скоростей к-рых лежат в интервалах от vx до vx+dvx, от vy до vy+dvy и от vz до vz+dvz, определяются ф-цией распределения Максвелла
где т — масса молекулы, n — число молекул в ед. объёма. Отсюда следует, что число молекул, абс. значения скоростей к-рых лежат в интервале от v до v+dv, также называемое М. р., имеет вид:
Оно достигает максимума при скорости vb=?(2kT/m) , наз. Наиболее вероятной скоростью. Для мол. водорода при T=273 К vb=1506 м/с. При помощи М. р. можно вычислить ср. значение любой ф-ции от скорости молекулы: ср. скорость vb (рис.).
При возрастании темп-ры максимум М. р. (значение vb) смещается к более высоким темп-рам. М. р. не зависит от вз-ствия между молекулами и справедливо не только для газов, но и для жидкостей, если для них возможно классич. описание. Оно справедливо также и для броуновских ч-ц (см. БРОУНОВСКОЕ ДВИЖЕНИЕ), взвешенных в жидкости или газе. М. р. может быть получено из канонического распределения Гиббса для классич. системы интегрированием по всем координатам ч-ц, т. к. в этом случае распределение по скоростям не зависит от распределения по импульсам. М. р. есть решение кинетического уравнения Больцмана для частного случая статистич. равновесия.
М. р. было подтверждено экспериментально нем. физиком О. Штерном (1920) в опытах с мол. пучками.