Математическая энциклопедия

Когомологий Групп

Исторически первая теория когомологий алгебр. Любой паре (G, А), где G- группа, а А — левый G-модуль, т. е. модуль над целочисленным групповым кольцом Z(G), сопоставляется последовательность абелевых групп Hn(G, А), называемых группами когомологий группы Gс коэффициентами в А. Число п, пробегающее все целые неотрицательные значения, наз. размерностью группы Hn(G, А). Группы К. г. являются важными инвариантами, содержащими информацию как о группе G, так и о модуле А. Группа H0(G, А )равна, по определению, НоmG(Z, А)А G, где А G — подмодуль G-инвариантных элементов в А. Группы Hn(G, А )для определяются как значения n-го производного функтора от функтора Пусть- некоторая проективная резольвента тривиального G-модуля Zв категории G-модулей, т. е. точная последовательность, в которой все модули Р, проективны. Тогда Hn(G, A)- это n-я группа когомологий комплекса где отображения d'n индуцированы отображениями drl, т. Для конечной группы G норменное отображение NG: индуцирует отображение H0(G, A)H0(G, А), где H0(G, A)-=A/JGA и JG- идеал кольца %(G), порожденный всеми элементами вида g-1 для Отображение Nq позволяет срастить точные последовательности когомологий и гомологии. Точнее, можно определить модифицированные группы когомологий — (называемые также когомологиям и Тейта) для всех целых п. При этом Для этих когомологий существует точная бесконечная в обе стороны когомологическая последовательность. G-модуль А наз. когомологически тривиальным, если для всех пи любой подгруппы Модуль Акогомологически тривиален тогда и только тогда, когда для нек-рого =0 и для любой подгруппы НМ G. Любой модуль Аможно представить как подмодуль или фактормодуль когомологически тривиального модуля, что позволяет применять сдвиг размерностей как для повышения, так и для понижения размерности. В частности, сдвиг размерностей позволяет определить отображения res и cores (но не inf) для всех целых п. Для конечно порожденного G-модуля Агруппы конечны. Группы аннулируются умножением на порядок G, а отображения индуцированные ограничениями, где Gp- некоторая силовская р-подгруппа группы G, мономорфны. Это позволяет сводить ряд вопросов о когомологиях конечных групп к рассмотрению когомологий р-групп. Когомологии циклической группы имеют период 2, т. е. для любого п Для любых целых n и m определено отображение (наз. -произведением) где тензорное произведение групп Аи Врассматривается как G-модуль. В частном случае, когда А- кольцо, и операции из группы Gявляются автоморфизмами, то -произведение превращает группу (G, А) в градуированное кольцо. Теорема двойственности для -произведения утверждает, что для любой полной абелевой группы Си G- модуля А -произведение определяет изоморфизм между группами и (см. [2]). -произведение определено и для бесконечной группы Gпри условии, что п, m>0. Многие задачи приводят к необходимости рассмотрения когомологий топологич. группы G, непрерывно действующей на топологич. модуле А. В частности, если G- проконечная группа (случай наиболее близкий конечным группам) и А- дискретная абелева группа, являющаяся непрерывным G-модулем, то можно рассмотреть когомологии группы Gс коэффициентами в А, вычисляемые в терминах непрерывных коцепей [5]. Эти группы можно определить также как пределы lim Hn(G/U, AU )относительно отображений инфляции, где Uпробегает все открытые нормальные делители в G. Эти когомологии обладают всеми основными свойствами когомологий конечных групп. Если G- про-р-группа, то размерности над Z/pZ первой и второй групп ее когомологий с коэффициентами в z/pZ интерпретируются как минимальное число образующих и соотношений (между этими образующими) группы G. О различных вариантах непрерывных когомологий, а также нек-рых других типах групп когомологий см. [6]. О К. г. с неабелевой группой коэффициентов см. Неабелевы когомологии. Лит.:[1] Маклейн С, Гомология, пер. с англ., М., 1966; [2] Картан А., Эйленберг С, Гомологическая алгебра, пер. с англ., М., 1960; [3] Алгебраическая теория чисел, пер. с англ., М., 1969; [4] Серр Ж.-П., Когомологии Галуа, пер. с франц., М., 1968; [5] Кох X., Теория Галуа р-расширений, пер. с нем., М., 1973; [6] Итоги науки. Математика. Алгебра. 1964, М., 1966, с. 203-35. Л. В. Кузьмин.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте