Некоторые специальные координаты в группе вращений трехмерного пространства SO(3), построение к-рых в конечном счете основано на связи между SO(3) и группой SU(2) унитарных матриц 2-го порядка с единичным определителем. Существует отображение являющееся эпиморфизмом по своим алгебраич. свойствам и двулистным накрытием — по топологическим. (Рассматриваемое в нек-рой окрестности единичной матрицы, это отображение обладает свойствами изоморфизма, поэтому говорят, что SO(3) и SU(2)локально изоморфны.) Каждая матрица имеет вид где — комплексные числа, связанные соотношением Их и принимают за К.- К. п. для (Иногда под К.- К. п. понимают все четыре коэффициента матрицы F.) Построение конкретного отображения с указанными свойствами можно осуществить по-разному, поэтому у различных авторов имеются нек-рые различия в определении К.- К. п. (см. [2], [3]). Поскольку ф является не настоящим изоморфизмом, а только двулистным накрытием, то невозможно определить К.- К. п. как (непрерывные) координаты на всей группе SO(3); это можно сделать лишь локально. Однако К.- К. п. можно использовать для изучения процесса вращения, при к-ром Анепрерывно зависит от действительного параметра t(причем здесь нет необходимости как-либо ограничивать область возможных значений А). Действительно, если для нек-рого t=t0 выбрано какое-то фиксированное значение прообраза то по непрерывности для всех tоднозначно определяются соответствующие V(t). (Двузначность полного прообраза проявляется лишь в том, что равенство A(t) = A(s).имеет место не только при V(t)=V(s), но и при V(t)=-V(s).).Поэтому К.- К. п. можно применять при исследовании движений твердого тела с неподвижной точкой (его конфигурационное пространство совпадает с SO(3)). Такой подход принят в [1], однако он не получил широкого распространения. Группа SU(2).изоморфна группе кватернионов с единичной нормой, поэтому, переходя от Vк соответствующему кватерниону можно вместо К.- К. п. пользоваться параметрами Эйлера — Родрига — четырьмя действительными числами удовлетворяющими соотношению Они связаны простыми формулами с К.- К. п. (см. [1], [3]) и обладают тем же свойством "двузначности" (историю вопроса см. в [1]). По существу, в относящихся сюда исследованиях впервые рассматривались двузначные представления группы вращений (см. Спинор). Лит.:[l] К l е i n F., S о m m е r f е l d A., Uber die Theorie des Kreisels, Ht. 1-2, Lpz., 1897-98 (перепечатка N. Y.- Stuttg., 1965); [2] Г о л д с т е й н Г., Классическая механика, пер. с англ., 2 изд., М., 1975; [3] С и н г Д ж.-Л., Классическая динамика, пер. с англ., М., 1963. Д. В. Аносов.