Математическая энциклопедия

Хопфа Расслоение

Локально тривиальное расслоение при n = 2, 4, 8. Это — один из самых ранних примеров локально тривиальных расслоений, введенный X. Хопфом [1]. Эти отображения индуцируют тривиальные отображения в гомологиях и когомологиях, однако они не гомотопны нулевому отображению, что вытекает из нетривиальности Хопфа инварианта этих отображений. Для их построения потребуется т. н. конструкция Хопфа. Пусть X*Y — джойн пространств . и Y, он обладает естественными координатами где При этом X*pt = SX, где SX — надстройка над X. Конструкция Хопфа сопоставляет отображению f: Xx Y -> Zотображение заданное соотношением Пусть отображения определены при n = 2, 4, 8 при помощи умножений: в комплексных числах при n = 2, в кватернионах при n = 4 и в числах Кэли при n = 8. Тогда Sn-1 * Sn-1= S2n-1, и отображением Хопфа наз. отображение Отображение Хопфа n =2, 4, 8 является локально тривиальным расслоением со слоем Sn-1. Если — отображение бистепени (d1, d2), то инвариант Хопфа отображения равен d1d2. В частности, инвариант Хопфа Х.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте