Большая советская энциклопедия
Геоме́трия
(греч. geometria, от ge — Земля и metreo — мерю)
раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре.
Происхождение термина «Г.", что буквально означает «землемерие», можно объяснить следующими словами, приписываемыми древнегреческому учёному Евдему Родосскому (4 в. до н. э.): «Геометрия была открыта египтянами и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития р. Нил, постоянно смывавшего границы». Уже у древних греков Г. означала математическую науку, в то время как для науки об измерении Земли был введён термин Геодезия. Судя по сохранившимся отрывкам древнеегипетских сочинений, Г. развилась не только из измерений Земли, но также из измерений объёмов и поверхностей при земляных и строительных работах и т.п.
Первоначальные понятия Г. возникли в результате отвлечения от всяких свойств и отношений тел, кроме взаимного расположения и величины. Первые выражаются в прикосновении или прилегании тел друг к другу, в том, что одно тело есть часть другого, в расположении «между», «внутри» и т.п. Вторые выражаются в понятиях «больше», «меньше», в понятии о равенстве тел.
Путём такого же отвлечения возникает понятие геометрического тела. Геометрическое тело есть абстракция, в которой сохраняются лишь форма и размеры в полном отвлечении от всех других свойств. При этом Г., как свойственно математике вообще, совершенно отвлекается от неопределённости и подвижности реальных форм и размеров и считает все исследуемые ею отношения и формы абсолютно точными и определёнными. Отвлечение от протяжения тел приводит к понятиям поверхности, линии и точки. Это явно выражено, например, в определениях, данных Евклидом: «линия есть длина без ширины», «поверхность есть то, что имеет длину и ширину». Точка без всякого протяжения есть абстракция, отражающая возможность неограниченного уменьшения всех размеров тела, воображаемый предел его бесконечного деления. Дальше возникает общее понятие о геометрической фигуре, под которой понимают не только тело, поверхность, линию или точку, но и любую их совокупность.
Г. в первоначальном значении есть наука о фигурах, взаимном расположении и размерах их частей, а также о преобразованиях фигур. Это определение вполне согласуется с определением Г. как науки о пространственных формах и отношениях. Действительно, фигура, как она рассматривается в Г., и есть пространственная форма; поэтому в Г. говорят, например, «шар», а не «тело шарообразной формы»; расположение и размеры определяются пространственными отношениями; наконец, преобразование, как его понимают в Г., также есть некоторое отношение между двумя фигурами — данной и той, в которую она преобразуется.
В современном, более общем смысле, Г. объемлет разнообразные математические теории, принадлежность которых к Г. определяется не только сходством (хотя порой и весьма отдалённым) их предмета с обычными пространственными формами и отношениями, но также тем, что они исторически сложились и складываются на основе Г. в первоначальном её значении и в своих построениях исходят из анализа, обобщения и видоизменения её понятий. Г. в этом общем смысле тесно переплетается с другими разделами математики и её границы не являются точными. См. разделы Обобщение предмета геометрии и Современная геометрия.
Развитие геометрии. В развитии Г. можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Г.
Первый — период зарождения Г. как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Г., дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Г., по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.
Этот процесс привёл, наконец, к качественному скачку. Г. превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались. С этого времени начинается второй период развития Г. Известны упоминания систематические изложения Г., среди которых данное в 5 в. до н. э. Гиппократом Хиосским (См. Гиппократ Хиосский). Сохранились же и сыграли в дальнейшем решающую роль появившиеся около 300 до н. э. «Начала» Евклида (См. Начала Евклида). Здесь Г. представлена так, как её в основном понимают и теперь, если ограничиваться элементарной геометрией (См. Элементарная геометрия); это наука о простейших пространственных формах и отношениях, развиваемая в логической последовательности, исходя из явно формулированных основных положений — аксиом и основных пространственных представлений. Г., развиваемую на тех же основаниях (аксиомах), даже уточнённую и обогащенную как в предмете, так и в методах исследования, называется евклидовой геометрией (См. Евклидова геометрия). Ещё в Греции к ней добавляются новые результаты, возникают новые методы определения площадей и объёмов (Архимед, 3 в. до н. э.), учение о конических сечениях (Аполлоний Пергский, 3 в. до н. э.), присоединяются начатки тригонометрии (Гиппарх, 2 в. до н. э.) и Г. на сфере (Менелай, 1 в. н. э.). Упадок античного общества привёл к сравнительному застою в развитии Г., однако она продолжала развиваться в Индии, в Средней Азии, в странах арабского Востока.
Возрождение наук и искусств в Европе повлекло дальнейший расцвет Г. Принципиально новый шаг был сделан в 1-й половине 17 в. Р. Декартом, который ввёл в Г. метод координат. Метод координат позволил связать Г. с развивавшейся тогда алгеброй и зарождающимся анализом. Применение методов этих наук в Г. породило аналитическую Г., а потом и дифференциальную. Г. перешла на качественно новую ступень по сравнению с Г. древних: в ней рассматриваются уже гораздо более общие фигуры и используются существенно новые методы. С этого времени начинается третий период развития Г. Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, Г. Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е. их непрерывные совокупности) и преобразования (понятию «дифференциальная Г.» придаётся теперь часто более общий смысл, о чём см. в разделе Современная геометрия). Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии (См. Проективная геометрия) в работах Ж. Дезарга и Б. Паскаля (См. Паскаль). Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений Г. были даны в 18 — начале 19 вв. Эйлером для аналитической Г. (1748), Монжем для дифференциальной Г. (1795), Ж. Понселе для проективной Г. (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии (См. Начертательная геометрия). Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) Г. оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.
Четвёртый период в развитии Г. открывается построением Н. И. Лобачевским (См. Лобачевский) в 1826 новой, неевклидовой Г., называемой теперь Лобачевского геометрией (См. Лобачевского геометрия). Независимо от Лобачевского в 1832 ту же Г. построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их). Источник, сущность и значение идей Лобачевского сводятся к следующему. В геометрии Евклида имеется аксиома о параллельных, утверждающая: «через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной». Многие геометры пытались доказать эту аксиому, исходя из других основных посылок геометрии Евклида, но безуспешно. Лобачевский пришёл к мысли, что такое доказательство невозможно. Утверждение, противоположное аксиоме Евклида, гласит: «через точку, не лежащую на данной прямой, можно провести не одну, а по крайней мере две параллельные ей прямые». Это и есть аксиома Лобачевского. По мысли Лобачевского, присоединение этого положения к другим основным положениям Г. приводит к логически безупречным выводам. Система этих выводов и образует новую, неевклидову Г. Заслуга Лобачевского состоит в том, что он не только высказал эту идею, но действительно построил и всесторонне развил новую Г., логически столь же совершенную и богатую выводами, как евклидова, несмотря на её несоответствие обычным наглядным представлениям. Лобачевский рассматривал свою Г. как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование (см. раздел Истолкования геометрии).
Переворот в Г., произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван «Коперником геометрии». В его идеях были намечены три принципа, определившие новое развитие Г. Первый принцип заключается в том, что логически мыслима не одна евклидова Г., но и другие «геометрии». Второй принцип — это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой Г. Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой Г. Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой Г., т.к. она определяется логической состоятельностью (непротиворечивостью) этой Г. Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая — в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики. Перечисленные общие принципы сыграли важную роль не только в Г., но и в математике вообще, в развитии её аксиоматического метода, в понимании её отношения к действительности.
Главная особенность нового периода в истории Г., начатого Лобачевским, состоит в развитии новых геометрических теорий — новых «геометрий» и в соответствующем обобщении предмета Г.; возникает понятие о разного рода «пространствах» (термин «пространство» имеет в науке два смысла: с одной стороны, это обычное реальное пространство, с другой — абстрактное «математическое пространство»). При этом одни теории складывались внутри евклидовой Г. в виде её особых глав и лишь потом получали самостоятельное значение. Так складывались проективная, аффинная, конформная Г. и др., предметом которых служат свойства фигур, сохраняющиеся при соответствующих (проективных, аффинных, конформных и др.) преобразованиях. Возникло понятие проективного, аффинного и конформного пространств; сама евклидова Г. стала рассматриваться в известном смысле как глава проективной Г. Др. теории, подобно геометрии Лобачевского, с самого начала строились на основе изменения и обобщения понятий евклидовой Г. Так, создавалась, например, многомерная Г.; первые относящиеся к ней работы (Г. Грасман и А. Кэли, 1844) представляли формальное обобщение обычной аналитической Г. с трёх координат на n. Некоторый итог развития всех этих новых «геометрий» подвёл в 1872 Ф. Клейн, указав общий принцип их построения.
Принципиальный шаг был сделан Б. Риманом (лекция 1854, опубликована 1867). Во-первых, он ясно формулировал обобщённое понятие пространства как непрерывной совокупности любых однородных объектов или явлений (см. раздел Обобщение предмета геометрии). Во-вторых, он ввёл понятие пространства с любым законом измерения расстояний бесконечно малыми шагами (подобно измерению длины линии очень малым масштабом). Отсюда развилась обширная область Г., т. н. Риманова геометрия и её обобщения, нашедшая важные приложения в теории относительности, в механике и др.
В тот же период зародилась Топология как учение о тех свойствах фигур, которые зависят лишь от взаимного прикосновения их частей и которые тем самым сохраняются при любых преобразованиях, не нарушающих и не вводящих новых прикосновений, т. е. происходящих без разрывов и склеиваний. В 20 в. топология развилась в самостоятельную дисциплину.
Так Г. превратилась в разветвленную и быстро развивающуюся в разных направлениях совокупность математических теорий, изучающих разные пространства (евклидово, Лобачевского, проективное, римановы и т.д.) и фигуры в этих пространствах.
Одновременно с развитием новых геометрических теорий велась разработка уже сложившихся областей евклидовой Г. — элементарной, аналитической и дифференциальной Г. Вместе с тем в евклидовой Г. появились новые направления. Предмет Г. расширился и в том смысле, что расширился круг исследуемых фигур, круг изучаемых их свойств, расширилось само понятие о фигуре. На стыке анализа и Г. возникла в 70-х гг. 19 в. общая теория точечных множеств, которая, однако, уже не причисляется к Г., а составляет особую дисциплину (см. Множеств теория). Фигура стала определяться в Г. как множество точек. Развитие Г. было тесно связано с глубоким анализом тех свойств пространства, которые лежат в основе евклидовой Г. Иными словами, оно было связано с уточнением оснований самой евклидовой Г. Эта работа привела в конце 19 в. (Д. Гильберт и др.) к точной формулировке аксиом евклидовой Г., а также других «геометрий».
Обобщение предмета геометрии. Возможность обобщения и видоизменения геометрических понятий легче всего уяснить на примере. Так, на поверхности шара можно соединять точки кратчайшими линиями — дугами больших кругов, можно измерять углы и площади, строить раз личные фигуры. Их изучение составляет предмет Г. на сфере, подобно тому, как планиметрия есть Г. на плоскости; Г. на земной поверхности близка к Г. на сфере. Законы Г. на сфере отличны от законов планиметрии; так, например, длина окружности здесь не пропорциональна радиусу, а растет медленнее и достигает максимума для экватора; сумма углов треугольника на сфере непостоянна и всегда больше двух прямых. Аналогично можно на любой поверхности проводить линии, измерять их длины, углы между ними, определять ограниченные ими площади. Развиваемая так Г. на поверхности называется её внутренней Г. (К. Гаусс, 1827). На неравномерно изогнутой поверхности соотношения длин и углов будут различными в разных местах, следовательно, она будет геометрически неоднородной, в отличие от плоскости и сферы. Возможность получения разных геометрических соотношений наводит на мысль, что свойства реального пространства могут лишь приближённо описываться обычной Г. Эта идея, впервые высказанная Лобачевским, нашла подтверждение в общей теории относительности.
Более широкая возможность обобщения понятий Г. выясняется из следующего рассуждения. Обычное реальное пространство понимают в Г. как непрерывную совокупность точек, т. е. всех возможных предельно точно определённых местоположений предельно малого тела. Аналогично непрерывную совокупность возможных состояний какой-либо материальной системы, непрерывную совокупность каких-либо однородных явлений можно трактовать как своего рода «пространство». Вот один из примеров. Опыт показывает, что нормальное человеческое зрение трёхцветно, т. е. всякое цветовое ощущение Ц есть комбинация — сумма трёх основных ощущений: красного К, зелёного З и синего С, с определёнными интенсивностями. Обозначая эти интенсивности в некоторых единицах через х, у, z, можно написать Ц = xK + уЗ + zC. Подобно тому, как точку можно двигать в пространстве вверх и вниз, вправо и влево, вперёд и назад, так и ощущение цвета Ц может непрерывно меняться в трёх направлениях с изменением составляющих его частей — красного, зелёного и синего. По аналогии можно сказать, что совокупность всех цветов есть трёхмерное пространство — «пространство цветов». Непрерывное изменение цвета можно изображать как линию в этом пространстве. Далее, если даны два цвета, например красный К и белый Б, то, смешивая их в разных пропорциях, получают непрерывную последовательность цветов, которую можно назвать прямолинейным отрезком КБ. Представление о том, что розовый цвет Р лежит между красным и белым и что более густой розовый лежит ближе к красному, не требует разъяснения. Т. о., возникают понятия о простейших «пространственных» формах (линия, отрезок) и отношениях (между, ближе) в пространстве цветов. Далее, можно ввести точное определение расстояния (например, по числу порогов различения, которое можно проложить между двумя цветами), определить поверхности и области цветов, подобно обычным поверхностям и геометрическим телам, и т.д. Так возникает учение о пространстве цветов, которое путём обобщения геометрических понятий отражает реальные свойства цветного зрения человека (см. Колориметрия).
Другой пример. Состояние газа, находящегося в цилиндре под поршнем, определяется давлением и температурой. Совокупность всех возможных состояний газа можно представлять поэтому как двумерное пространство. «Точками» этого «пространства» служат состояния газа; «точки» различаются двумя «координатами» — давлением и температурой, подобно тому как точки на плоскости различаются значениями их координат. Непрерывное изменение состояния изображается линией в этом пространстве.
Далее, можно представить себе любую материальную систему — механическую или физико-химическую. Совокупность всех возможных состояний этой системы называют «фазовым пространством». «Точками» этого пространства являются сами состояния. Если состояние системы определяется n величинами, то говорят, что система имеет n степеней свободы. Эти величины играют роль координат точки-состояния, как в примере с газом роль координат играли давление и температура. В соответствии с этим такое фазовое пространство системы называют n-мерным. Изменение состояния изображается линией в этом пространстве; отдельных области состояний, выделяемые по тем или иным признакам, будут областями фазового пространства, а границы областей будут поверхностями в этом пространстве. Если система имеет только две степени свободы, то её состояния можно изображать точками на плоскости. Так, состояние газа с давлением р и температурой Т изобразится точкой с координатами р и Т, а процессы, происходящие с газом, изобразятся линиями на плоскости. Этот метод графического изображения общеизвестен и постоянно используется в физике и технике для наглядного представления процессов и их закономерностей. Но если число степеней свободы больше 3, то простое графическое изображение (даже в пространстве) становится невозможным. Тогда, чтобы сохранить полезные геометрические аналогии, прибегают к представлению об абстрактном фазовом пространстве. Так, наглядные графические методы перерастают в это абстрактное представление. Метод фазовых пространств широко применяется в механике, теоретической физике и физической химии. В механике движение механической системы изображают движением точки в её фазовом пространстве. В физической химии особенно важно рассматривать форму и взаимное прилегание тех областей фазового пространства системы из нескольких веществ, которые соответствуют качественно различным состояниям. Поверхности, разделяющие эти области, суть поверхности переходов от одного качества к другому (плавление, кристаллизация и т.п.). В самой Г. также рассматривают абстрактные пространства, «точками» которых служат фигуры; так определяют «пространства» кругов, сфер, прямых и т.п. В механике и теории относительности вводят также абстрактное четырёхмерное пространство, присоединяя к трём пространственным координатам время в качестве четвёртой координаты. Это означает, что события нужно различать не только по положению в пространстве, но и во времени.
Т. о., становится понятным, как непрерывные совокупности тех или иных объектов, явлений, состояний могут подводиться под обобщённое понятие пространства. В таком пространстве можно проводить «линии», изображающие непрерывные последовательности явлений (состояний), проводить «поверхности» и определять подходящим образом «расстояния» между «точками», давая тем самым количественное выражение физическая понятия о степени различия соответствующих явлений (состояний), и т.п. Так по аналогии с обычной Г. возникает «геометрия» абстрактного пространства; последнее может даже мало походить на обычное пространство, будучи, например, неоднородным по своим геометрическим свойствам и конечным, подобно неравномерно искривленной замкнутой поверхности.
Предметом Г. в обобщённом смысле оказываются не только пространственные формы и отношения, но любые формы и отношения, которые, будучи взяты в отвлечении от своего содержания, оказываются сходными с обычными пространственными формами и отношениями. Эти пространственно-подобные формы действительности называют «пространствами» и «фигурами». Пространство в этом смысле есть непрерывная совокупность однородных объектов, явлений, состояний, которые играют роль точек пространства, причём в этой совокупности имеются отношения, сходные с обычными пространственными отношениями, как, например, расстояние между точками, равенство фигур и т.п. (фигура — вообще часть пространства). Г. рассматривает эти формы действительности в отвлечении от конкретного содержания, изучение же конкретных форм и отношений в связи с их качественно своеобразным содержанием составляет предмет других наук, а Г. служит для них методом. Примером может служить любое приложение абстрактной Г., хотя бы указанное выше применение n-мерного пространства в физической химии. Для Г. характерен такой подход к объекту, который состоит в обобщении и перенесении на новые объекты обычных геометрических понятий и наглядных представлений. Именно это и делается в приведённых выше примерах пространства цветов и др. Этот геометрический подход вовсе не является чистой условностью, а соответствует самой природе явлений. Но часто одни и те же реальные факты можно изображать аналитически или геометрически, как одну и ту же зависимость можно задавать уравнением или линией на графике.
Не следует, однако, представлять развитие Г. так, что она лишь регистрирует и описывает на геометрическом языке уже встретившиеся на практике формы и отношения, подобные пространственным. В действительности Г. определяет широкие классы новых пространств и фигур в них, исходя из анализа и обобщения данных наглядной Г. и уже сложившихся геометрических теорий. При абстрактном определении эти пространства и фигуры выступают как возможные формы действительности. Они, стало быть, не являются чисто умозрительными конструкциями, а должны служить, в конечном счёте, средством исследования и описания реальных фактов. Лобачевский, создавая свою Г., считал её возможной теорией пространственных отношений. И так же как его Г. получила обоснование в смысле её логической состоятельности и применимости к явлениям природы, так и всякая абстрактная геометрическая теория проходит такую же двойную проверку. Для проверки логической состоятельности существенное значение имеет метод построения математических моделей новых пространств. Однако окончательно укореняются в науке только те абстрактные понятия, которые оправданы и построением искусственной модели, и применениями, если не прямо в естествознании и технике, то хотя бы в др. математических теориях, через которые эти понятия так или иначе связываются с действительностью. Лёгкость, с которой математики и физики оперируют теперь разными «пространствами», достигнута в результате долгого развития Г. в тесной связи с развитием математики в целом и других точных наук. Именно вследствие этого развития сложилась и приобрела большое значение вторая сторона Г., указанная в общем определении, данном в начале статьи: включение в Г. исследования форм и отношений, сходных с формами и отношениями в обычном пространстве.
В качестве примера абстрактной геометрической теории можно рассмотреть Г. n-мерного евклидова пространства. Она строится путём простого обобщения основных положений обычной Г., причём для этого имеется несколько возможностей: можно, например, обобщать аксиомы обычной Г., но можно исходить и из задания точек координатами. При втором подходе n-мерное пространство определяют как множество каких-либо элементов-точек, задаваемых (каждая) n числами x1, x2,…, xn, расположенными в определённом порядке, — координатами точек. Далее, расстояние между точками Х = (x1, x2,…, xn) и X'= (x’1, x’2,…, х’n) определяется формулой:
что является прямым обобщением известной формулы для расстояния в трёхмерном пространстве. Движение определяют как преобразование фигуры, которое не изменяет расстояний между её точками. Тогда предмет n-мерной Г. определяется как исследование тех свойств фигур, которые не меняются при движениях. На этой основе легко вводятся понятия о прямой, о плоскостях различного числа измерений от двух до n—1, о шаре и т.д. Т. о. складывается богатая содержанием теория, во многом аналогичная обычной евклидовой Г., но во многом и отличная от неё. Нередко бывает, что результаты, полученные для трёхмерного пространства, легко переносятся с соответствующими изменениями на пространство любого числа измерений. Например, теорема о том, что среди всех тел одинакового объёма наименьшую площадь поверхности имеет шар, читается дословно так же в пространстве любого числа измерений [нужно лишь иметь в виду n-мерный объём, (n—1)-мерную площадь и n-мерный шар, которые определяются вполне аналогично соответствующим понятиям обычной Г.]. Далее, в n-мерном пространстве объём призмы равен произведению площади основания на высоту, а объём пирамиды — такому произведению, деленному на n. Такие примеры можно продолжить. С др. стороны, в многомерных пространствах обнаруживаются также качественно новые факты.
Истолкования геометрии. Одна и та же геометрическая теория допускает разные приложения, разные истолкования (осуществления, модели, или интерпретации). Всякое приложение теории и есть не что иное, как осуществление некоторых её выводов в соответствующей области явлений.
Возможность разных осуществлений является общим свойством всякой математической теории. Так, арифметические соотношения реализуются на самых различных наборах предметов; одно и то же уравнение описывает часто совсем разные явления. Математика рассматривает лишь форму явления, отвлекаясь от содержания, а с точки зрения формы многие качественно различные явления оказываются часто сходными. Разнообразие приложений математики и, в частности, Г. обеспечивается именно её абстрактным характером. Считают, что некоторая система объектов (область явлений) даёт осуществление теории, если отношения в этой области объектов могут быть описаны на языке теории так, что каждое утверждение теории выражает тот или иной факт, имеющий место в рассматриваемой области. В частности, если теория строится на основе некоторой системы аксиом, то истолкование этой теории состоит в таком сопоставлении её понятий с некоторыми объектами и их отношениями, при котором аксиомы оказываются выполненными для этих объектов.
Евклидова Г. возникла как отражение фактов действительности. Её обычная интерпретация, в которой прямыми считаются натянутые нити, движением — механическое перемещение и т.д., предшествует Г. как математической теории. Вопрос о других интерпретациях не ставился и не мог быть поставлен, пока не выявилось более абстрактное понимание геометрии. Лобачевский создал неевклидову Г. как возможную геометрию, и тогда возник вопрос о её реальном истолковании. Эта задача была решена в 1868 Э. Бельтрами, который заметил, что геометрия Лобачевского совпадает с внутренней Г. поверхностей постоянной отрицательной кривизны, т. е. теоремы геометрии Лобачевского описывают геометрические факты на таких поверхностях (при этом роль прямых выполняют геодезические линии, а роль движений — изгибания поверхности на себя). Поскольку вместе с тем такая поверхность есть объект евклидовой Г., оказалось, что геометрия Лобачевского истолковывается в понятиях геометрии Евклида. Тем самым была доказана непротиворечивость геометрии Лобачевского, т.к. противоречие в ней в силу указанного истолкования влекло бы противоречие в геометрии Евклида.
Т. о., выясняется двоякое значение истолкования геометрической теории — физическое и математическое. Если речь идёт об истолковании на конкретных объектах, то получается опытное доказательство истинности теории (конечно, с соответствующей точностью); если же сами объекты имеют абстрактный характер (как геометрическая поверхность в рамках геометрии Евклида), то теория связывается с другой математической теорией, в данном случае с евклидовой Г., а через неё с суммированными в ней опытными данными. Такое истолкование одной математической теории посредством другой стало математическим методом обоснования новых теорий, приёмом доказательства их непротиворечивости, поскольку противоречие в новой теории порождало бы противоречие в той теории, в которой она интерпретируется. Но теория, посредством которой производится истолкование, в свою очередь, нуждается в обосновании. Поэтому указанный математический метод не снимает того, что окончательным критерием истины для математических теорий остаётся практика. В настоящее время геометрические теории чаще всего истолковывают аналитически; например, точки на плоскости Лобачевского можно связывать с парами чисел х и у, прямые — определять уравнениями и т.п. Этот приём даёт обоснование теории потому, что сам математический анализ обоснован, в конечном счёте, огромной практикой его применения.
Современная геометрия. Принятое в современной математике формально-математическое определение понятий пространства и фигуры исходит из понятия множества (см. Множеств теория). Пространство определяется как множество каких-либо элементов («точек») с условием, что в этом множестве установлены некоторые отношения, сходные с обычными пространственными отношениями. Множество цветов, множество состояний физической системы, множество непрерывных функций, заданных на отрезке [0, 1], и т.п. образуют пространства, где точками будут цвета, состояния, функции. Точнее, эти множества понимаются как пространства, если в них фиксируются только соответствующие отношения, например расстояние между точками, и те свойства и отношения, которые через них определяются. Так, расстояние между функциями можно определить как максимум абсолютной величины их разности: max|f (x)—g (x)|. Фигура определяется как произвольное множество точек в данном пространстве. (Иногда пространство — это система из множеств элементов. Например, в проективной Г. принято рассматривать точки, прямые и плоскости как равноправные исходные геометрические объекты, связанные отношениями «соединения».)
Основные типы отношений, которые в разных комбинациях приводят ко всему разнообразию «пространств» современной Г., следующие:
1) Общими отношениями, имеющимися во всяком множестве, являются отношения принадлежности и включения: точка принадлежит множеству, и одно множество есть часть другого. Если приняты во внимание только эти отношения, то в множестве не определяется ещё никакой «геометрии», оно не становится пространством. Однако, если выделены некоторые специальные фигуры (множества точек), то «геометрия» пространства может определяться законами связи точек с этими фигурами. Такую роль играют аксиомы сочетания в элементарной, аффинной, проективной Г.; здесь специальными множествами служат прямые и плоскости.
Тот же принцип выделения некоторых специальных множеств позволяет определить понятие топологического пространства — пространства, в котором в качестве специальных множеств выделены «окрестности» точек (с условием, что точка принадлежит своей окрестности и каждая точка имеет хотя бы одну окрестность; наложение на окрестности дальнейших требований определяет тот или иной тип топологических пространств). Если всякая окрестность заданной точки имеет общие точки с некоторым множеством, то такая точка называется точкой прикосновения этого множества. Два множества можно назвать соприкасающимися, если хотя бы одно из них содержит точки прикосновения другого; пространство или фигура будет непрерывной, или, как говорят, связной, если её нельзя разбить на две несоприкасающиеся части; преобразование непрерывно, если оно не нарушает соприкосновений. Т. о., понятие топологического пространства служит для математического выражения понятия непрерывности. [Топологическое пространство можно определить также другими специальными множествами (замкнутыми, открытыми) или непосредственно отношением прикосновения, при котором любому множеству точек ставятся в соответствие его точки прикосновения.] Топологические пространства как таковые, множества в них и их преобразования служат предметом топологии. Предмет собственно Г. (в значительной её части) составляет исследование топологических пространств и фигур в них, наделённых ещё дополнительными свойствами.
2) Второй важнейший принцип определения тех или иных пространств и их исследования представляет введение координат. Многообразием называется такое (связное) топологическое пространство, в окрестности каждой точки которого можно ввести координаты, поставив точки окрестности во взаимно однозначное и взаимно непрерывное соответствие с системами из n действительных чисел x1, x2,(, xn. Число n есть число измерений многообразия. Пространства, изучаемые в большинстве геометрических теорий, являются многообразиями; простейшие геометрические фигуры (отрезки, части поверхностей, ограниченные кривыми, и т.п.) обычно — куски многообразий. Если среди всех систем координат, которые можно ввести в кусках многообразия, выделяются системы координат такого рода, что одни координаты выражаются через другие дифференцируемыми (то или иное число раз) или аналитическими функциями, то получают т. н. гладкое (аналитическое) многообразие. Это понятие обобщает наглядное представление о гладкой поверхности. Гладкие многообразия как таковые составляют предмет т. н. дифференциальной топологии. В собственно Г. они наделяются дополнительными свойствами. Координаты с принятым условием дифференцируемости их преобразований дают почву для широкого применения аналитических методов — дифференциального и интегрального исчисления, а также векторного и тензорного анализа (см. Векторное исчисление, Тензорное исчисление). Совокупность теорий Г., развиваемых этими методами, образует общую дифференциальную Г.; простейшим случаем её служит классическая теория гладких кривых и поверхностей, которые представляют собою не что иное, как одно- и двумерные дифференцируемые многообрази