Математическая энциклопедия

Бесконечно Удаленные Элементы

Несобственные элементы,- элементы (точки, прямые, плоскости и т. д.), возникающие при расширении нек-рого аффинного пространства до компактного пространства. Б. у. э. являются одной из форм проявления в различных математич. теориях "актуальной" бесконечности. При этом неразрывная связь бесконечного и конечного проявляется в том, что Б. у. э. имеют смысл лишь постольку, поскольку они рассматриваются при нек-рой конкретной компактификации данного "конечного" пространства. Ниже описываются виды Б. у. э., возникающие при наиболее часто применяемых способах компактификации евклидовых конечномерных пространств. 1) Введением Б. у. э. (точек ) числовая прямая пополняется до компактной расширенной числовой прямой гомеоморфной отрезку. Другой способ компактификации состоит в погружении в действительную проективную прямую , гомеоморфную окружности (см. Проективное пространство);при этом пополняется одной единственной бесконечно удаленной точкой . 2) Добавлением одной единственной бесконечно удаленной точки конечная комплексная плоскость пополняется до компактной расширенной комплексной плоскости гомеоморфной комплексной проективной прямой или Римана сфере (единичной сфере в евклидовом пространстве ). 3) Добавлением одной единственной бесконечно удаленной точки n-мерное действительное числовое пространство пополняется до компактного расширенного числового пространства гомеоморфного сфере этот гомеоморфизм наглядно демонстрируется стереографической проекцией. Другой способ компактификации состоит в погружении в n-мерное действительное проективное пространство . При эти две компактификации не гомео-морфны. Например, параллельным прямым в проективной плоскости соответствует одна и та же бесконечно удаленная точка, непараллельным прямым — различные бесконечно удаленные точки. Все бесконечно удаленные точки плоскости составляют бесконечно удаленную прямую. Аналогично, в проективном пространстве P3(R) каждая плоскость дополнена бесконечно удаленной прямой. Все бесконечно удаленные точки и бесконечно удаленные прямые в составляют бесконечно удаленную плоскость. Вообще, в все Б. у. э. размерности составляют бесконечно удаленную -мерную гиперплоскость. 4) Компактификация комплексного n-ме.



ScanWordBase.ru — ответы на сканворды
в Одноклассниках, Мой мир, ВКонтакте